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Aquaculture plays an important role in the food and nutrition of many
countries and is particularly significant in rural development. Clariid catfish
(Clarias spp.) are regarded as one of the most promising aquaculture species and
contribute significantly to the economy of Thailand. The hybrid freshwater catfish
from native parental species (C. gariepinus x C. macrocephalus) has faster growth
and disease resistance as a favored breed in aquaculture but the sterility of F1 male
hybrids has presented a major obstacle to commercial production. The complex sex-
determination system (SDS) between the two parental species might affect sterility.
This study explored the SDSs of these two species using diversity arrays technology
sequencing (DArTseq) to generate single nucleotide polymorphism (SNP) loci and
restriction site specific presence-absence (PA) markers. DArTseq is a successful
method for identifying sex-linked markers in non-model species. Male and female-
linked loci reached the criteria of moderately sex-linked loci at 70:30, 80:20, 90:10
and 100:0. Results suggest that the male heterogametic XX/XY SDS should co-
exist with the ZZ/ZW system in African catfish. The SDS of African catfish might
be influenced by a polygenic sex-determination (PSD) system, consisting of many
independently segregating sex ‘“switch” loci to determine sex within a species,
while bighead catfish may also exhibit a male heterogametic XX/XY sex-
determination system. One male-linked locus showed homology with the GTSF1L
gene, which exhibits a testis-enriched expression pattern. Male-linked loci on the
putative Y sex chromosome were identified as an extremely small proportion of the
genome. A PCR-based DNA marker was developed to validate the male-linked loci
in bighead catfish. Research results disclosed that ZZ/ZW SDS can co-exist with
XXIXY SDS as PSD in the same individuals of hybrid catfish. Most of these loci
were not sex-linked in the parental species, suggesting that the hybrid exhibits a
combination of different alleles. One female-linked locus was homologous with the
B4AGALNT1 gene, which is involved in the spermatogenesis pathway and
hatchability. These SDS findings can be applied to improve commercial breeding of
this species in Thailand. This approach, using moderately sex-linked loci, provides
a baseline to identify potential sex determination regions in catfish, thereby
enabling genetic enhancement in breeding programs.
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Introduction

Agquaculture plays an important role in the food and nutrition of many
countries and is particularly significant in rural development (Loring, 2019). Clarias
catfish, including North African catfish (Clarias gariepinus), bighead catfish (C.
macrocephalus) and their hybrids are farmed in at least 55 countries with an annual
global output of 1, 245.3 million tons in 2018 (FAO, 2021). The bighead catfish (C.
macrocephalus) is widely distributed in Laos, Cambodia, Vietnam, and Thailand
(Davidson, 1975; Kuronuma, 1961; Rainboth, 1996; Suvatii, 1981). The bighead
catfish is preferred for its better taste and soft meat but aquaculture is not widespread
because of slow growth and high disease sensitivity (Senanan et al., 2004). The North
African catfish (C. gariepinus) is a highly adaptable species with tolerance for low
water quality and resistance to many infectious agents. During the 1980s, a hybrid
catfish was introduced by crossing female bighead catfish (C. macrocephalus) and
male African catfish (C. gariepinus). The hybrid has fast growth and high disease
resistance contributed by the parental genomes and became popular in aquaculture
(Na-Nakorn et al., 1994), accounting for over 90% of catfish production in Thailand
in 2004 (Na-Nakorn, Kamonrat, et al., 2004; Ponjarat et al., 2019). However, the
sterility of the hybrid is a major obstacle to mass production. The SDS complexity
between the two parental species has been postulated to impact sterility (Na-Nakorn,
Rangsin, et al., 2004; Ponjarat et al., 2019) SDSs are complex and poorly understood
in catfish. Breeding programs encounter difficulties in sex manipulation to produce

monosex populations that can support the stability of mating systems.
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Background and Rationale

Sex determination systems in teleosts have been observed across taxa as
hermaphroditism, genetic sex determination (GSD), multifactorial polygenic sex-
determining (PSD) mechanisms and environmental sex determination (ESD) (Ezaz et
al., 2016). The evolutionary lability of sex determination and the rapid rate of
turnovers and transitions among different modes makes the teleost an excellent model
for testing theories regarding the evolution of sex determining adaptation (Pennell et
al., 2018). Heterogametic sex chromosomes have been observed in less than 1% of
teleost fish (Kottler & Schartl, 2018; Mank et al., 2006), while sex chromosomes in
teleosts are far less differentiated, with recombination often occurring along their
length. In the catfish lineage, sex determination processes are complex, with varying
patterns of sex chromosomes depending on geographical region. Clariid catfish
include 14 genera found in India, Syria, Southeast Asia and Africa. Most clariid
species have the diploid chromosome number (2n) ranging from 48 to 56, except for
C. pachynema (2n = 66) and one population of C. batrachus (2n = 104) (Eyo &
Effiong, 2005; Jianxun et al., 1991; Malla & Ganesh, 2009; Maneechot et al., 2016).
In the Clarias genus, walking catfish, mudfish (C. anguillaris, Linnaeus, 1758) and
West African catfish (C. ebriensis, Pellegrin, 1920) have a ZZ/ZW sex-determination
system (Eyo & Effiong, 2005; Pandey & Lakra, 1997), whereas white spotted clarias
show XX/XY.

The African catfish is the most complex species with XX/XY or ZZ/ZW
systems in different geographical populations. Almost all the reported sex
chromosome systems from Africa and Israel show that C. gariepinus indicated a
ZZIZW system (Eyo & Effiong, 2005; Ozouf-Costaz et al., 1990; Teugels et al.,
1992). Molecular marker, chromosome analysis, genetic manipulation and hormonal
sex-reversal experiments suggested a XX/XY system in C. gariepinus with different
sampled populations from lIsrael, Hungary and China (Eding, 1997; Galbusera et al.,
2000; Liu et al., 1996). In bighead catfish, no heteromorphic sex chromosomes have
been identified (Maneechot et al., 2016; Ponjarat et al., 2019; Siraj et al., 2009), while
gynogenesis research can induce bighead catfish to produce all-female stocks. This

study suggests a possible male heterogametic (XX/XY) system (Na-Nakorn, 1995).
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Previous studies identified diploid chromosome numbers of African catfish and
bighead catfish as 56 and 54, respectively while the diploid chromosome number of
hybrid catfish is 55 (Maneechot et al., 2016; Ponjarat et al., 2019). The male hybrid
produced as a result of interspecific hybridization is sterile, and widespread
production of the F1 hybrid has been limited. This sterility might occur because of the
different parental diploid chromosome numbers or from a complex interaction
between the two different sex-determining mechanisms of these species (Na-Nakorn,
Rangsin, et al., 2004; Ponjarat et al., 2019). Therefore, understanding the sex-
determination system of C. gariepinus, C. macrocephalus and hybrid catfish in
Thailand is necessary to assist in breeding programs of this species and its hybrid.
Various methods are used to identify sex chromosomes such as karyotype
analyses prepared using standardized staining procedures that reveal characteristic
structural features for heteromorphic sex chromosomes in teleosts and other animals
(Chen et al., 2014; Singchat et al., 2020; Singchat et al., 2018; Srikulnath et al., 2019;
Srikulnath et al., 2014; Srikulnath et al., 2015). However, this approach is not
available for several species that exhibit homomorphic sex chromosomes (Panthum et
al., 2021; Ponjarat et al., 2019; Singchat et al., 2020). Molecular genetic markers,
restriction fragment length polymorphism (RFLP) and amplified fragment length
polymorphism (AFLP) were applied in several studies (Bagda et al., 2013; Kovacs et
al., 2000; Vaux et al., 2020) but these traditional methods are time-consuming. In taxa
with homomorphic sex chromosomes, restriction site-associated DNA sequencing
(RADseq) has been proposed as an approach to identify sex-linked marker (Gamble &
Zarkower, 2014). This method has proved successful in inferring the sex determining
process for several fish species (Palaiokostas et al., 2013). Currently, diversity arrays
technology (DArT) based on next-generation sequencing technology is a whole-
genome genotyping tool that can discover and score hundreds of polymorphic loci
without the requirement for preexisting sequence information. DArT is a potent high-
throughput approach at cheap cost per data point for obtaining accurate and
reproducible marker data. DArT is similar to RAD sequencing, ddRAD sequencing
and genotyping by sequencing (GBS) methods to generate sex-linked markers and
determine sex-linked regions with multiple loci. Here, a reliable molecular approach
based on sex-linked markers was developed to identify the genetic sex of individuals.
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Results can provide information about sex chromosome evolution and conservation in
several species (Alam et al., 2021; Lambert et al., 2016). Lambert et al. (2016) used
single nucleotide polymorphic (SNP) loci generating restriction site specific presence-
absence (PA) markers as an effective method to identify sex-linked markers in non-
model species. Markers generated using DArTseq™ showed loci assorted to a
particular sex. This method enables the identification of loci tightly linked to sex-
determining regions of sex chromosomes, thereby providing a useful tool to discover
sex-determining modes in non-model species with cryptic sex chromosomes. These
sex-linked markers can identify sex reversal in non-model species by observing the

discordance between genotypic and phenotypic sex (Lambert et al., 2016).
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Objectives

1. To identify the sex determination systems in North African catfish (C.
gariepinus) and bighead catfish (C. macrocephalus).
2. To understand the mechanism of sex determination transfer from parental

species to hybrid offspring.
Contribution/Outcome of this Research

Successful development of this research will increase the understanding of sex
determination mechanisms, leading to the application of genotypic sex assay and
genetic improvement in the breeding management of clariid catfish. All sex-linked loci
are necessary to improve sex control in monosex populations, protect wild populations
through supportive breeding and maintain effective population size. The research
findings will assist future studies, provide useful data for understanding the genetic
basis of sex determination and discover novel genes and sequences in sex

differentiation pathways.
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An investigation of sex-specific loci may provide important insights into fish sex
determination strategies. This may be useful for biotechnological purposes, for example,
to produce all-male or all-female fish for commercial breeding. The North African catfish
species, Clarias gariepinus, has been widely adopted for aguaculture because its
superior growth and disease resistance render the species suitable for hybridization with
other catfish to improve the productivity and quality of fish meat. This species has either
a ZZ/ZW or XX/XY sex determination system. Here, we investigate and characterize
these systems using high-throughput genome complexity reduction sequencing as
Diversity Arrays Technology. This approach was effective in identifying moderately sex-
linked loci with both single-nucleotide polymorphisms (SNPs) and restriction fragment
presence/absence (PA) markers in 30 perfectly sexed individuals of C. gariepinus.
However, SNPs based markers were not found in this study. In total, 41 loci met
the criteria for being moderately male-linked (with male vs. female ratios 80:20 and
70:30), while 25 loci were found to be moderately linked to female sex. No strictly
male- or female-linked loci were detected. Seven moderately male-linked loci were
partially homologous to some classes of transposable elements and three moderately
male-linked loci were partially homologous to functional genes. Our data showed
that the male heterogametic XX/XY sex determination system should co-exist with
the ZZ/ZW system in C. gariepinus. Our finding of the co-existence of XX/XY and
ZZ/Z\W systems can be applied to benefit commercial breeding of this species in
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Thailand. This approach using moderately sex-linked loci provides a solid baseline
for revealing sex determination mechanisms and identify potential sex determination
regions in catfish, allowing further investigation of genetic improvements in breeding

programs.

Keywords: fish, SNP, recombination, aquaculture, transposable element

INTRODUCTION

Aquaculture plays an important role in global food production
(Belton and Thilsted, 2014; Loring et al, 2019). However,
the availability of land and water resources for aquaculture
is currently limited, while susceptibility to new diseases is
increasing (Ayyam et al., 2019; Lebel et al., 2019). This has
facilitated continuous improvements in breeding programs by
cross-breeding between different species to generate new hybrid
varieties that can tolerate high stocking densities (Dunham and
Masser, 2012; Zhou et al., 2018). Clariid catfish (Clarias spp.) are
commonly distributed in freshwater from the River Orange in
South Africa to the Nile in North Africa, as well as in parts of
Asia (Israel, Syria, Southern Turkey, and Southeast Asia) (Skelton
and Teugels, 1992; Teugels and Adriaens, 2003; Na-Nakorn et al.,
2004a). With good flesh quality (taste and firmness), the bighead
catfish (Clarias macrocephalus, Giinther, 1864) is one of the
most economically important freshwater fish in Southeast Asia
(Giinther, 1864; Teugels et al., 1999). However, it is difficult to
develop sustainable breeding management programs because of
the low growth rate and high susceptibility to disease (Jarimopas
et al., 1988; Na-Nakorn et al., 1993; Senanan et al., 2004). The
North African catfish species (C. gariepinus, Burchell, 1822) was
introduced for hybridization with bighead catfish to improve the
productivity and quality of the fish meat (Burchell, 1822; Nukwan
etal., 1990). A hybrid was developed by crossing artificially male
North African catfish and female bighead catfish (Senanan et al.,
2004). This F; hybrid catfish exhibits a rapid growth rate and
has a high disease resistance, which has led to the propagation
of these hybrids in the aquaculture market. They now represent
more than 90% of catfish production in Thailand (Na-Nakorn
et al, 2004a). The F; hybrids are physically more vigorous
than either parental species, but their mass production has been
limited by reproductive failure (Koolboon et al., 2014; Ponjarat
etal, 2019). Ponjarat et al. (2019) asserted that hybrid dysgenesis
between the bighead catfish and North African catfish is caused
by karyotypic and genomic differences, resulting in meiotic arrest
and subsequent apoptosis of gametocytes. However, the Fy hybrid
can occasionally cross-breed in captivity, whereby the female
hybrids are fertile, with the potential to produce large numbers of
backcross progeny that shows fertility and low embryo mortality,
whereas the male hybrids are sterile (Na-Nakorn et al., 2004b;
Abol-Munafi et al., 2006). Sex hormones have been applied in
an attempt to promote spermatogenesis, but the F; male hybrids
have always remained sterile (Abol-Munafi et al., 2006). The
complexity of sex determination interaction between the two
species might influence differences in fertility between F; male
and female hybrids (Ponjarat et al., 2019).

The North African catfish species, C. gariepinus has been
widely adopted for aquaculture within and outside its native
ranges (Van der Bank, 1998; Dai et al., 2011; Wachirachaikarn
and Na-Nakorn, 2019), and is considered the tropical catfish
species best suited to aquaculture (Clay, 1979; Okonkwo and
Obiakor, 2010), leading to the application of C. gariepinus for
cross-breeding with other clariid catfish (Rahman et al., 2013).
They have been extensively distributed around the world (Vitule
et al., 2006; Na-Nakorn and Brummentt, 2009). The farming of
C. gariepinus is rapidly expanding due to its superior growth
and disease resistance against fungi, viruses and bacteria (Akoll
and Mwanja, 2012; Taukhid et al, 2015). C. gariepinus that
carried the MHC-II marker showed better growth and were
significantly different from other catfish (Suprapto et al., 2017).
Moreover, they are also important for biological research such as
genome manipulation (Bongers et al., 1995; Galbusera et al., 2000;
Erondu et al., 2011; Nwachi and Dasuki, 2017). However, the
problematics of taxonomy and systematics are complex and need
thorough revision with inclusion of populations from different
geographic origins (Teugels, 1982, 1984, 1986). Historically,
several stocks of C. gariepinus have been introduced to Thailand
(Wachirachaikarn and Na-Nakorn, 2019), and genetic diversity
of a few has been identified significantly different between
Thailand and Nigeria (Falaye et al., 2011; Wachirachaikarn and
Na-Nakorn, 2019). Therefore, a proper understanding of the sex
determination system of C. gariepinus in Thailand is necessary to
assist in breeding programs of this species and its hybrid.

The family of air-breathing or labyrinth catfish (Clariidae)
is one of the largest among the Siluriformes (Burgess, 1989).
Clariid fish comprise 14 genera with 115 species found in India,
Syria, Southern Turkey, Southeast Asia, and Africa. Most have the
highly conserved karyotype with diploid chromosome number
(2n) ranging from 48 to 56, with the exception of C. pachynema
(2n =66), and one population of C. batrachus (2n = 104) (Jianxun
et al, 1991; Eyo and Effiong, 2005; Malla and Ganesh, 2009;
Maneechot et al., 2016). These findings show that C. gariepinus
phylogenetically exhibits both the XX/XY and ZZ/ZW system
(Figure 1). However, significant variation in fish sex chromosome
systems has been recorded, not only among closely related species
(such as in tilapias, ricefishes, or sticklebacks; Takehana et al.,
2008; Ross et al, 2009; Ser et al., 2010; Cnaani, 2013) but
also between different populations of the same species (e.g.,
Eigenmannia virescens and Ancistrus cf. dubius; Almeida-Toledo
et al,, 2001; Mariotto et al., 2004; Mariotto and Miyazawa, 2006;
Fernandes et al., 2019). Recent genotyping using next-generation
sequencing, such as Diversity Arrays Technology (DArTseq™)
developed by Diversity Arrays Technology Pty Ltd., (Canberra,
ACT, Australia), is an effective method for the identification
of sex-linked loci in non-model species. The variability in SNP
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loci generates presence/absence polymorphism in restriction sites
(so-called PA markers) and these may facilitate the identification
of divergent genomic regions present in one sex only, thus
pointing to a putative region of suppressed recombination on a
presumed sex chromosome. To identify the sex determination
system in the C. gariepinus, we applied DArTseq™ in captive-
bred individuals scored with phenotypic sex. The mapped
DArTseq™ sequences were then used to search for homologies
with other ‘model’ teleosts (Japanese rice fish: Oryzias latipes,
zebrafish: Danio rerio, and Japanese pufferfish: Takifugu rubripes),
and amniotes (chicken: Gallus gallus). Our findings also provide
novel insights into the evolutionary history of sex determination
in catfish.

MATERIALS AND METHODS

Specimens and DNA Extraction

Fifteen male and fifteen female individuals of North African
catfish (C. gariepinus) were collected with weight of 1.7-
2.0 kg and length of 35-40 cm. The sampled individuals were
randomly picked from a large breeding stock to avoid the
probability of high incidence of siblings in our pool. The sex
of each individual was identified by external morphology and
internal examination of gonadal morphology (Kitano et al., 2007;
Esmaeili et al., 2017; Ponjarat et al., 2019). Hence, the sex of
all specimens obtained from the Department of Aquaculture,
Faculty of Fisheries, Kasetsart University (Bangkok, Thailand)
was determined to avoid potentially wrong sexing due to sex
reversal. The fins were removed for DNA extraction. Animal
care and all experimental procedures were approved by the
Animal Experiment Committee, Kasetsart University (Approval
No. ACKU61-SCI-026), and conducted in accordance with the
Regulations on Animal Experiments at Kasetsart University.
Whole genomic DNA was extracted following the standard
salting-out protocol as previously described (Supikamolseni
et al, 2015). The quality of extracted DNA was evaluated by
gel electrophoresis, and samples with high-molecular weight
DNA were stored at —20°C until required for DArTseq™
library construction.

DArT Sequencing and Genotyping

A detailed description of the DArTseq™ methodology can be
found in Jaccoud et al. (2001). The method often produces 69
base pairs (bp) long sequences. Genotyping of multiple loci
was performed using DArTseq™ (Diversity Arrays Technology
Pty Ltd., Canberra, Australian Capital Territory, Australia) for
SNP loci and in silico DArT (PA of restriction fragments in
the representation; PA loci) to determine the candidate sex-
specific loci between male and female individuals. Approximately
100 ng of DNA from each sample was used for the
development of DArTseq™ arrays. DNA samples were subjected
to digestion/ligation reactions as described by Kilian et al. (2012)
and digested with PstI and a second restriction endonuclease
(Sphl). Ligation reactions were performed using two adaptors:
a Pstl compatible adaptor consisting of an Illumina flow-cell
attachment sequence, primer sequence, and a unique barcode

sequence; and a Sphl compatible adaptor consisting of an
Mumina flow-cell attachment region. Ligated fragments were
then amplified by PCR using the following parameters: initial
denaturation at 94°C for 1 min, followed by 30 cycles of 94°C
for 20 s, 58°C for 30 s, and 72°C for 45 s with a final extension
step at 72°C for 7 min. Equimolar amounts of amplification
products from each individual were pooled and subjected to
lumina’s proprietary cBot' bridge PCR followed by sequencing
on the Illumina HiSeq 2000 platform. Single read sequencing was
run for 77 cycles.

Sequences were processed using proprietary DArTseq'™
analytical pipelines (Ren et al, 2015). Initially, the HiSeq
2000 output (FASTQ file) was processed to filter poor-quality
sequences. Two different thresholds of quality were applied. For
the barcode region (allowing parsing of sequences into specific
sample libraries), we applied stringent selection (minimum Phred
pass score of 30, minimum pass length percentage 75). For
the remainder of the sequence, relaxed thresholds were applied
(minimum Phred pass score 10, minimum pass length percentage
50). Approximately 2,000,000 sequences per individual were
identified and used in marker calling. Finally, identical sequences
were combined into “fastqcoll” files that were used in the
secondary proprietary pipeline (DArTsoft14) for SNP and PA
loci calling. To this end, we used the “reference-free” algorithm
implemented in DArTsoft14. The sequence clusters were then
parsed into SNP and in silico DArTseq™ markers utilizing
a range of metadata parameters derived from the quantity
and distribution of each sequence across all samples in the
analysis. Multiple libraries of the same individual were included
in the DArTseq™ genotyping process, enabling reproducibility
scores to be calculated for each candidate marker. Outputs by
DArTsoft14 were then filtered on the basis of reproducibility
values, average count for each sequence (sequencing depth),
balance of average counts for each SNP allele, and call-rate
(proportion of samples for which the marker was scored).

Marker Selection and DArT Sequencing
Analysis

Sex-specific loci were derived from the analysis of SNP co-
dominant markers and PA as dominant markers. The SNP data
were coded as “0” for the reference allele homozygote (the most
common allele), “1” for the SNP allele homozygote, “2” for the
heterozygote, or “~” as the double null/null allele homozygote
(absence of a SNP fragment in the genomic representation). The
PA data were coded as “1” for presence, “0” for absence, or
“~” for putative heterozygosity. For sex-linked markers in an
XX/XY sex-determination system, reference alleles are expected
to be located on the X-chromosome. Here, “SNP alleles” were
those that showed polymorphism relative to the reference allele.
In an XX/XY system, SNP alleles should be associated with
the Y sex chromosome, and located in or near to the male-
determination region if the allele is tightly Y-specific. If the two
sex chromosomes recombine, SNP alleles should occasionally
appear on the X chromosome. Some males might then be
homozygous for SNP alleles at particular loci, with females

'http://www.illumina.com/products/cbot.html
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being heterozygous, exhibiting a copy of the SNP allele but the
probability of a female being homozygous for a SNP allele should
be low. For evaluation of loci associated with an XX/XY system,
loci with female homozygosity frequencies for the reference allele
of at least 70% were retained, whereas those with homozygosity
at the SNP allele at no more than 30% and heterozygosity
at no more than 30% were discarded. For males, loci with
homozygosity frequencies for the reference allele of at most
30% and heterozygosity of at least 70% were retained. However,
this allowed sex-linked loci to show a higher degree of SNP
allele homozygosity for males if recombination occurred. For PA
markers, loci that had restriction fragments sequenced in at least
70% of males and not sequenced in at least 70% of females were
selected. The SNP and PA loci sequenced for 80%, 90%, and 100%
of males were also included in a separate dataset. Loci passing the
100% filtering criterion were designated as perfectly sex-linked,
whereas those passing at 70-90% were called moderately sex-
linked loci. An opposite similar approach was carried out for
targeting loci with a ZZ/ZW system.

Calculation of the Hamming distance was performed to
determine the number of combined loci between male and female
individuals for pairwise differences in SNP and PA loci using the
“rdist” function of R version 3.5.1 statistical software (R Core
Team, 2019). Heatmaps were plotted using the ggplot2 R package
(R Core Team, 2019). The Hamming distance represents the
number of pairwise differences between all individuals across
all loci. To examine the genetic association between each locus
and phenotypic sex assignment from the SNP and PA loci,
the Cochran-Armitage trend test (CATT) was performed using
the “catt” function of R version 3.5.1 with the HapEstXXR

package (R Core Team, 2019; Sven and Klaus, 2019). The CATT
results were similar to those of a chi-square test to assess
whether the proportion of different genotypes followed the null
expectation. Polymorphism information content (PIC), as an
index for evaluation of the informativeness of SNP and PA loci,
was calculated for each locus and ranged from 0 (fixation of one
allele) to 0.5 (frequencies of the two alleles are equal).

Estimation of Expected Sex-Linked
Markers

The probability of candidate loci showing random associations
with sex under a small sample size was estimated (Lambert et al.,
2016). The formula P; = 0.5" describes the probability of a locus
being perfectly sex-linked by chance, where P is the probability
for a given locus, i is sex-linked, 0.5 is the probability that either a
female is homozygous or a male is heterozygous at a given locus,
and 7 is the number of individuals sequenced at the locus. After
sequencing, we multiplied P by the number of high-quality SNPs
produced to estimate the number of SNPs expected to exhibit a
perfectly sex-linked pattern by chance.

Comparison of Potential Sex-Linked Loci

We scored all candidate loci, the frequency of analyzed loci was
not strictly (100%) sex-linked. A three-sample chi-square for PA
loci and heterozygosity for SNP loci assuming unequal variances
(based on results from the descriptive statistics) was performed to
determine whether these three groups were significantly different
from each other using the chi-square test with the R package
“stats” for PA loci, and the Kruskal-Wallis test using the R
package “stats” and the Nemenyi test using the R package
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“PMCMR” for SNP loci, to determine the mean heterozygosity
and standard deviation for each (Gruber and Georges, 2019).
All candidate loci were plotted against each individual using the
‘glPlot’ function in the R package ‘dartR’ (Gruber and Georges,
2019; R Core Team, 2019).

Homology Searching

For all sex-linked loci that reached our criteria and had
statistically significant associations with phenotypic sex, a Basic
Local Alignment Search Tool (BLAST) search was performed to
investigate the homologies of the sex-linked SNP/PA loci against
a selection of available teleost fish genomes (Japanese rice fish:
O. latipes) (Accession No. GCF_002234675.1) (Kasahara et al.,
2007), zebrafish: D. rerio (Accession No. GCA_000002035.4)
(Broughton et al, 2001), Japanese pufferfish: T. rubripes
(Accession No. GCA_901000725.2) (Elmerot et al., 2002),
amniote reference genomes (chicken: G. gallus) (Accession No.
AADNO00000000.5) (International Chicken Genome Sequencing
Consortium, 2004). We selected the aforementioned species as
representative reference genomes in the homology search analysis
due to the availability of their high-quality gene annotations
and near complete up-to-date assemblies. The BLAST homology
search was performed in two rounds. First we aligned sex-linked
loci against the reference fish genome, and then we mapped
the homologous genes to further clarify their location on sex
chromosomes of high-quality annotated genomes representing
vertebrate and invertebrate species. Using the BLASTn program,
sex-linked loci were used to search the NCBI database* and
RepBase version 19.11 (Bao et al,, 2015) (Genetic Information
Research Institute, http://www.girinst.org/). This is a specialized
nucleotide sequence collection for repeated or other significant
sequences that only reports E-values lower than 0.05 and query
coverage with similarity of more than 50%.

RESULTS

Determination of Sex-Linked Loci in

North African Catfish

We sequenced 42,752 SNP loci and 118,118 PA loci. PIC values
ranged from 0.49 to 0.50 for all loci. To determine whether
XX/XY or ZZ/ZW sex chromosomes drive sex determination
in C. gariepinus, we compared a number of SNP and PA after
filtering with a gradually varying set of criteria. For the ZZ/ZW
type, filtering using the criterion of 30:70 male:female presented
only 25 PA loci as moderately female-linked and no SNP loci.
Proportional pairwise Hamming distance between males and
females using moderately sex-linked PA loci showed within-
sex distances of 0.563 £ 0.011 in males and 0.403 £ 0.014 in
females, and showed between-sex distances of 0.675 £ 0.007
for PA loci. The CATT results verified a significant locus
association with phenotypic sex for 25 PA (x2 = 5.07-11.63;
p < 0.001) loci. Moreover, 20:80 male:female yielded only one
PA loci as moderately female-linked and no SNP loci. Hamming

Zhttp://blast.ncbi.nlm.nih.gov/Blast.cgi

distance between males and females using moderately sex-
linked PA loci showed within-sex distances of 0.543 4 0.049
in males and 0.343 £ 0.047 in females. Between-sex distances
showed 0.707 %+ 0.03 PA loci. CATT verified a significant
locus association with sex phenotype for one PA (x2 = 9.07;
p < 0.001) locus (Figure 2). No SNP or PA loci associated with
females was found for the criteria of 10:90 and 0:100 male:female
(Figure 3, Table 1). Chi-square tests showed that 30:70 and 20:80
filtering criteria indicated no significant differences in males
(%2 =1.2226 x 1073 p = 1) and females (x2 = 1.0206 x 1073%;
p=1) for PA.

By contrast, for the XX/XY type, filtering using the criterion of
70:30 male:female yielded 42 PA loci as moderately male-linked
loci and no SNP loci. Proportional pairwise Hamming distance
between male and female African catfish using moderately sex-
linked PA loci (under the null exclusive model) showed lower
within-sex distances 0f 0.373 £ 0.01 in males and 0.624 4= 0.009 in
females for PA loci. Between-sex distances showed 0.699 + 0.006
for PA loci. CATT verified significant loci association with
phenotypic sex for 41 PA (x2 = 3.55-13.06; p < 0.001) loci.
The criterion of 80:20 male:female yielded one PA locus as
moderately male-linked. Hamming distance between males and
females using moderately sex-linked PA loci showed within-
sex distances of 0.343 £ 0.047 in males and 0.648 £ 0.047 in
females, and between-sex distances of 0.773 & 0.0028 for PAloci.
CATT verified significant loci association with phenotypic sex
for one PA (x2 = 9.75; p < 0.001) locus (Figure 2). The criteria
of 90:10 and 100:0 male:female did not show any PA locus as
male-specific (Figure 3, Table 2). Chi-square tests revealed that
the 70:30 and 80:20 filtering criteria produced no significant
differences in males (x2 = 4.5003 x 10732 p = 1) and females
(X2 = 2.4989 x 10732 p = 1) for PA. A glPlot revealed that
the sample group showed greater similarity between sexes when
moderately sex-linked loci were considered in both XX/XY and
ZZ/ZW sex determination systems (Figure 4).

Estimation of Expected Sex-Linked

Markers

For a range of sample sizes and loci, a sample of 30 phenotypically
sexed individuals is essential to minimize the probability of
selecting less than one spurious sex-linked marker. The P;
probability that a single locus exhibited a perfectly sex-linked
pattern by chance is 9.31 x 10~ !°. Considering that we analyzed
the full dataset (no filtering) of 160,870 (including SNP and PA
loci), this translates to an expected number of perfect sex-linked
loci due to chance alone of 1.5 x 107*.

Homology of Putative Sex-Linked Loci

In terms of a ZZ/ZW sex chromosome system, female moderately
sex-linked loci of C. gariepinus had sequence homology with
Japanese rice fish (O. latipes), Japanese pufferfish (T. rubripes),
and zebrafish (D. rerio) genomes on the basis of global BLAST
analyses of NCBI databases. No sequence homology was found
with the chicken genome (Supplementary Table 1). We found
that 2 of 25 PA loci were homologous with putative genes:
PCDH2AB3 (E-values 2 x 107 !!, Query Cover 100% and
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FIGURE 2 | Hamming distance between male and female individuals of African catfish (Clarias gariepinus). (A) restriction fragment presence/absence (PA) loci with
the criterion 70:30 (male:female), (B) PA loci with the criterion 30:70 (male:female), (C) PA loci with the criterion 80:20 (male:female), (D) PA loci with the criterion
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TABLE 1 | DAIT analysis of 15 males and 15 females of African catfish (Clarias gariepinus) (ZZ/ZW sex-determination type).

30:70 male:female

20:80 male:female 10:90 male:female 0:100 male:female

PA' SNP? PA' SNP? PA' SNP? PA' SNP2
Total number of DArT analyses 118,118 42,752 118,118 42,752 118,118 42,752 118,118 42,752
Moderately sex-linked loci 25 - 1 - - - - -
Overall mean distance between males and females ~ 0.675 + 0.007 E 0.707 £ 0.03 - - - - -
Overall mean distance within females 0.403 £ 0.014 - 0.343 £+ 0.047 - - - - -
Overall mean distance within males 0.5663 £ 0.011 = 0.5643 £ 0.049 - - - - -

! Presence/Absence (PA) loci.
2Single nucleotide polymorphism (SNP) loci.

TABLE 2 | DAIT analysis of 15 males and 15 females of African catfish (Clarias gariepinus) (XX/XY sex-determination type).

70:30 male:female

80:20 male:female 90:10 male:female 100:0 male:female

PA' SNP? PA' SNP? PA! SNP?2 PA! SNP2
Total number of DAT analyses 118,118 42,752 118,118 42,752 118,118 42,752 118,118 42,752
Moderately sex-linked loci 41 - 1 - - - - -
Overall mean distance between males and females ~ 0.699 =+ 0.006 = 0.773 £ 0.0028 - - 3 P -
Overall mean distance within females 0.624 + 0.009 - 0.648 + 0.047 - - - - -
Overall mean distance within males 0.3783 £ 0.01 = 0.343 & 0.047 - - - - -
! Presence/Absence (PA) loci.
2Single nucleotide polymorphism (SNP) loci.
XX/XY Sex determination system ZZIZW Sex determination system
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FIGURE 4 | (A) Index of 41 moderately sex-linked loci with criterion of 70:30 (male:female) (XX/XY sex determination system) and (B) index of 25 moderately
sex-linked loci with criterion of 30:70 (male:female) (ZZ/ZW sex determination system) created using the ‘glPolt’ function in the R package ‘dartR."” Orange indicates
loci presence, green is indicative of loci absence, and white indicates null loci.

similarity 82.61%) and DCTN4 (E-values 4 x 108, Query Cover
68% and similarity 89.58%) from D. rerio (Wu, 2005; Bayés et al.,
2017) (Supplementary Table 2). Moreover, 4 of 25 PA loci had
partial homology with transposable elements, comprising 3 loci
with similarity to Gypsy families and 1 locus of retroelement
Rex1 (Supplementary Table 3). By contrast, for the XX/XY

sex chromosome system, 3 out of 41 moderately male sex-
linked PA loci of C. gariepinus had sequence homology with
putative genes: ADD3 (E-values 2 x 10™4, Query Cover 71% and
similarity 81.63%) from D. rerio (Pasquier et al., 2016), GUCD1
(E-values 0.038, Query Cover 56% and similarity 82.05%) from
T. rubripes (Elmerot et al., 2002), and DNTA (E-values 0.003,
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Query Cover 52% and similarity 86.11%) from G. gallus (Bellott
et al,, 2017) (Supplementary Table 4), whereas 7 of 41 PA loci
had partial homology with transposable elements consisting of
3 loci of Gypsy, 3 loci of Tcl/mariner families, and 1 locus
of short interspersed nuclear elements (SINEs) (Supplementary
Table 5). Moreover, one PA locus was matched with a non-coding
region homologous to the chicken Z chromosome (GGAZ)
(Supplementary Table 6).

DISCUSSION

Fish sex chromosomes are often homomorphic (i.e., cytologically
indistinguishable) which hampers their analysis (Otake et al.,
2010; Gammerdinger and Kocher, 2018). Such a condition,
however, seems to facilitate frequent sex chromosome turnovers
(Gammerdinger and Kocher, 2018; Ieda et al., 2018). The
variation in fish sex chromosome systems has been recorded
among closely related species (such as in tilapias, ricefishes, or
sticklebacks; Takehana et al., 2008; Ross et al., 2009; Ser et al.,
2010; Cnaani, 2013) and also between different populations
of the same species (e.g., Eigenmannia virescens and Ancistrus
cf. dubius; Almeida-Toledo et al., 2001; Mariotto et al., 2004;
Mariotto and Miyazawa, 2006; Fernandes et al.,, 2019). Given
these facts, the identification of sex-linked loci is important
for a thorough elucidation of the sex chromosome origin and
evolution in teleosts, on both inter-specific and inter-population
levels (Herpin and Schartl, 2015; Kottler and Schartl, 2018).
An intriguing situation has been found in C. gariepinus, where
several reports differed in the type of detected sex chromosome
systems, suggesting either XX/XY or ZZ/ZW constitution
(Ozouf-Costaz et al., 1990; Bakhoum, 1996; Liu et al., 1996; Eding
et al.,, 1997; Varadi et al., 1999; Okonkwo and Obiakor, 2010).
Here, DArTseq™ technology was applied to a large number
of SNP/PA loci, allowing the prediction of sex-linked loci for
C. gariepinus using a sample size of 30 individuals (15 males and
15 females). Many false-positive signals might be expected from
such specimens due to their more diverse genetic background
(Gamble et al., 2015); however, our data show the feasibility
of our approach. The probability of one locus showing sex
linkage spuriously was 9.31 x 1071 from the full dataset (no
filtering) of 160,870 loci (including SNP and PA loci), whereas
the expected amount of perfect sex linkage was estimated to
be 1.5 x 107%; thus, identification of any sex-linked loci by
chance seems unlikely. Our analysis reports the co-occurrence of
male and female linked loci with a different proportion (70:30)
across all the sampled specimens, suggesting that the XY and ZW
systems can coexist inside the same fish individual. Our results
indicate that sex chromosome turnover might still be in action in
this species.

Both ZZ/ZW or XX/XY Sex Chromosome
Systems Co-exist in North African
Catfish

Most of the reported sex chromosome systems from Africa
and Israel support the assumption that the ZZ/ZW system
is the ancestral type for C. gariepinus (Ozouf-Costaz et al,

1990; Teugels et al, 1992; Eyo and Effiong, 2005). However,
molecular marker, chromosome analysis, genome manipulation
(both gynogenesis and androgenesis), and hormonal sex-reversal
experiments with different sampled populations from Israel,
Hungary and China have suggested a XX/XY system in
C. gariepinus (Liu et al,, 1996; Eding et al., 1997; Galbusera et al.,
2000; Figure 5). Our study successfully identifies 41 SNP/PA
loci as moderately male-linked loci, in contrast to 25 moderately
female-linked loci. Based on the comparison between several
teleost reference genomes, the loci were not all located in the
same linkage group. One scenario might be that all loci are in
the same linkage group for C. gariepinus but, just hypothetically,
this chromosome pair was evolved by fusion. Comparison of
moderately sex-linked loci between the two candidate systems
showed that two female-linked loci had homology with putative
protein-coding genes. One of these two loci was homologous
to the DCTN4 gene located on the sex chromosome in
platypus (Ornithorhynchus anatinus) (Warren et al, 2008)
(Supplementary Table 7). By contrast, three moderately male-
linked loci were homologous to protein-coding genes, including
GUCDI, which is located on the sex chromosome of the monarch
butterfly (Danaus plexippus plexippus), tongue sole (Cynoglossus
semilaevis), fruit fly (Drosophila busckii), and dog (Canis lupus
familiaris) (Supplementary Table 8) (Lindblad-Toh et al., 2005;
Chen et al, 2014; Gu et al, 2019; Renschler et al, 2019).
However, in this study, moderately male-linked markers were
found simultaneously with moderately female-linked markers
in the same individuals, as found in cichlids (Roberts et al.,
2016). This suggests that the XX/XY sex determination system
might co-exist with ZZ/ZW system in the same individuals of
C. gariepinus.

Genomic convergence has been detected by comparative
cytogenetics studies in which unrelated sex chromosomes share
sex chromosomal linkage homologies across distantly related
species (Srikulnath et al., 2014, 2015; Ahmad et al, 2020;
Koomgun et al., 2020; Laopichienpong et al., 2020; Singchat
et al., 2020a,b). We found that a male-linked locus under
the 70:30 criterion shared partial homology with ADD3 which
is localized on GGA6, which is further orthologous to sex
chromosomes of sand lizard (Lacerta agilis). In addition, another
male-linked 70:30 locus had a partial homology with GUCDI
on GGA15 that is partially homologous to sex chromosomes of
green anole (Anolis carolinensis), spiny softshell turtle (Apalone
spinifera), and Chinese softshell turtle (Pelodiscus sinensis)
(Figure 6; Kawagoshi et al., 2009; Alfoldi et al., 2011; Badenhorst
et al, 2013; Rovatsos et al., 2014; Srikulnath et al., 2014;
Singchat et al., 2020a,b). Similar cases were also observed in
which linkage homologies or small partial linkage homologies
were conserved between teleost and amniote sex chromosomes
(Kasahara et al., 2007; Cortez et al., 2014). Our results are only
based on observations of certain PA loci showing homology
to segments presented on some sex chromosomes of other
amniotes or members of gene families, not exactly the identical
gene. Moreover, lots of material between sex chromosomes
and autosomes moves via transposition (in both directions);
therefore, some genes can be independently co-opted to relocate
to different linkage groups, with abundant evidence, typically
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FIGURE 5 | Population map indicating a male heterogamety (XX/XY) and female heterogamety (ZZ/ZW) belonging to different groups (Ozouf-Costaz et al., 1990;
Teugels et al., 1992; Liu et al., 1996; Galbusera et al., 2000; Kovécs et al., 2001; Maneechot et al., 2016; Ponjarat et al., 2019).

in mammals (Mitchell et al., 1998; Uechi et al., 2002; Kuroiwa
etal,, 2010; Hughes et al., 2015). This could be further studied by
other approaches such as whole genome sequencing and genome
assembly. One moderately female-linked locus was observed in
C. gariepinus corresponding to GGA13 and partially homologous
to sex chromosomes of platypus (Ornithorhynchus anatinus) and
W sex chromosome of Siamese cobra (Naja kaouthia) (Veyrunes
et al,, 2008; Singchat et al.,, 2018; Figure 6). Moderately sex-
linked loci derived from 70:30 and 80:20 (male:female) filtering
criteria indicate partial recombination between X and Y sex
chromosomes. These loci are relatively close to potential male-
determining regions but they are not intimately connected.

Although transposable elements can be dispersed on
many chromosomes or even throughout the entire genome,
large amplification of the elements are often found on sex
chromosomes in many organisms (Ahmad et al., 2020; Koomgun
et al., 2020; Laopichienpong et al., 2020; Yoshido et al., 2020).
The presence of accumulated TEs leads to the establishment
of heterochromatin, and possibly also to TE recombination
between non-homologous copies. The activity of transposable
elements could play an important role in sex chromosome
differentiation through mechanisms of chromosomal breakage,
deletion, and rearrangement (Chalopin et al., 2015; Dechaud
et al., 2019). Seven out of 41 male-linked SNP/PA loci were
identical to transposable elements such as Gypsy, Mariner/Tcl,
and SINE, which are commonly distributed on sex chromosomes
in Japanese rice fish (O. latipes) and half-smooth tongue sole
(C. semilaevis) (Chen et al., 2014; Inoue et al., 2017).

Same Species of North African Catfish at
Different Localities Show Different Sex
Determination Systems

Karyotypes of C. gariepinus from different localities of tropical
Africa and Israel are very stable and exhibit the ZZ/ZW type
(Ozouf-Costaz et al, 1990; Teugels et al., 1992; Bakhoum,
1996; Okonkwo and Obiakor, 2010). However, our analysis
of C. gariepinus with sampled populations from Thailand
indicates the presence of the XX/XY co-existing with ZZ/ZW
type. Possibly, C. gariepinus has two different sex chromosome
groups in Bangui, Central African Republic, West Africa, while
other fish species such as the southern platyfish, Xiphophorus
maculatus, exhibit a different mechanism of sex determination
among diverse populations (Volff and Schartl, 2001). Similarly,
both ZZ/ZW and XX/XY sex chromosome systems have been
reported in the glass knifefish, Eigenmannia virescens. The
ZW group is distributed in Mato Grosso do Sul State, Brazil,
with the XY group in the Tieté River, Brazil (Almeida-Toledo
et al., 2001; Fernandes et al., 2019), while Ancistrus cf. dubius
revealed female heterogamety in the Paraguay River Basin, Brazil
and male heterogamety in the Coxip6 River, Brazil (Mariotto
et al., 2004; Mariotto and Miyazawa, 2006). Another well-known
example of ZW/XY co-occurrence has been reported in some
fish species of cichlids such as Oreochromis niloticus, Oreochromis
aureus, Astatotilapia burtoni and Metriaclima pyrsonotus. These
species have a male heterogametic (XY) system and a female
heterogametic (ZW) system on different linkage groups (Ser
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FIGURE 6 | Moderately male-linked and female-linked loci of Africa catfish (Clarias gariepinus) showing partial homologies with putative genes: ADD3 (Danio rerio)
(Pasquier et al., 2016), GUCD1 (Takifugu rubripes) (Elmerot et al., 2002) and DCTN4 (Danio rerio) (Bayés et al., 2017). These genes were located on chromosomes of
chicken (Gallus gallus, GGA) and other amniote sex chromosomes, such as sand lizard (Lacerta agilis, LAG), green anole (Anolis carolinensis, ACA), spiny softshell
turtle (Apalone spinifera, ASP), Chinese softshell turtle (Pelodiscus sinensis, PSI), dog (Canis lupus familiaris, CLU), tongue sole (Cynoglossus semilaevis, CSE), and
invertebrates, such as fruit fly (Drosophila busckii, DBU), monarch butterfly (Danaus plexippus plexippus, DPL), and female-specific loci of African catfish (Clarias
gariepinus) showing homologies with chicken (Gallus gallus, GGA), platypus (Ornithorhynchus anatinus, OAN), Siamese cobra (Naja Kaouthia, NKA). Chromosomal
locations of genes in the amniotes were obtained from comparative gene mapping (chromosome mapping via a cytogenetic technique) and whole genome
sequencing as the following sources: GGA from Matsuda et al. (2005), ACA from Alféldi et al. (2011), LAG from Srikulnath et al. (2014), ASP from Badenhorst et al.
(2013), PSI from Kawagoshi et al. (2009), CLU from Lindblad-Toh et al. (2005), DBU from Renschler et al. (2019), CSE from Chen et al. (2014), DPL from Gu et al.

(2019), OAN from Veyrunes et al. (2008), and NKA from Singchat et al. (2018).

et al., 2010; Cnaani, 2013; Moore and Roberts, 2013; Conte
et al,, 2017; Gammerdinger and Kocher, 2018). The majority
of the sex chromosome systems in clariid catfish show the
ancestral karyotype with ZZ/ZW system (Agnese et al., 1990;
Volckaert and Agnese, 1996). This suggests that the ZW
group with differentiated sex chromosomes of C. gariepinus
might be distributed in West Africa, whereas the turnover
of sex chromosome systems might have occurred in ancestral
homomorphic ZW sex chromosomes, resulting in the XY
group. Historically, more than one stock of C. gariepinus has
been introduced to Thailand but the origin of this population
remains unknown (Wachirachaikarn and Na-Nakorn, 2019).
Thus, it is necessary to identify potential geographic variation
in sex linkage across these loci, and across boundary regions
between the geographic groups, as well as examining the
phylogenetic history for various populations of C. gariepinus.
Moreover, it is very interesting to examine the mutual affinity
of the two different systems of sex determination when they
meet secondarily after divergence from each other. Specimen
collection of C. gariepinus from Africa with the XY group is
necessary to prove these hypotheses.

A distinct difference exists between growth rates of the two
sexes in C. gariepinus (Henken et al., 1987; Falaye et al., 2011),
and improvement of genome manipulation such as gynogenesis

or androgenesis and hormone treatment procedures by early
molecular sexing could be economically important for species
aquaculture. Results of genome-wide SNP such as those from
DArTseq™ methodology provide sex-specific SNP/PA loci in
moderately sex-linked loci for identifying sex determination and
sex-linked markers, although this can be applied only narrowly
across species (Lambert et al., 2016; Hill et al., 2018). The
next phase of this study requires a PCR-based approach for
sex identification to provide a genotypic tool for the practical
sexing of individuals, allowing accurate detection of sex in
populations through insight into the evolutionary history of the
Y chromosome. However, failure of the PCR validation step has
often been observed after DArTseq™ or RADseq bioinformatics
analysis (Gamble et al., 2015). This outcome might result from
conserved regions in both sexes of sequences adjacent to sex-
specific restriction sites (Gamble, 2016).

CONCLUSION

We have presented an approach of genome-wide SNP used to
identify a notable number of moderately sex-linked loci given
the small portion of the genome involved. Results of moderately
linked (and lacking sex-specific) markers in both male and
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female individuals show that the male heterogametic XX/XY sex
determination system should co-exist with ZW system in the
same individuals of C. gariepinus, indicating a probable ongoing
transition between two sex chromosome systems. However,
it remains unclear whether the location of large genomic
regions between X-specific and Y-specific fragments is associated
with differentiation of sex chromosomes and sex-determination
regions. It might be possible that the two C. gariepinus
populations exhibit different sex chromosome systems. Thus,
the possibility exists of within-species sex chromosome turnover,
which could be further tested by other methods such as genome
assembly. Further analysis of unrelated individuals from the
wild is also required to understand the dynamics of the sex
determination system in this lineage. Chromosome mapping
using fluorescence in situ hybridization (FISH) technique on
sex-specific loci should be performed on both mitotic and
meiotic chromosomes, while immunostaining of synaptonemal
complexes may show regions of asynapsis on putative sex
chromosomes. A high-quality whole genome assembly for North
African catfish will further enhance our understanding of the sex-
determination mechanism and lead to the development of more
robust assays for genotypic sex, allowing a much greater degree
of genetic improvement in the breeding management of North
African catfish, bighead catfish, and their hybrids.
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ARTICLE INFO ABSTRACT

Keywords: Bighead catfish (Clarias macrocephalus, Giinther, 1864) is an important aquacultural species that plays a crucial
Aquaculture role in the economy of Southeast Asia. Crossbreeding between female bighead catfish and male African catfish
Catfish

(C. gariepinus, Burchell, 1822) is used to produce hybrids with vigorous phenotypes. However, sterility of the
hybrid is a major obstacle to their mass production. There is an emerging hypothesis that the complexity of the
sex-determination system between two parental species might affect sterility. Previous studies investigated the
co-existence of XX/XY and ZZ/ZW sex-determination systems in the African catfish population in Thailand, but in
bighead catfish the sex-determination system remains poorly understood. In this study, the sex-determination
system of the bighead catfish was examined using Diversity Arrays Technology to identify the genomic vari-
ants associated with sex-linked regions. The results support the hypothesis of the previous study that the bighead
catfish might exhibit a male heterogametic XX/XY sex-determination system with multiple male-linked loci. One
of the male-linked loci showed homology with the GTSFIL gene, which shows a testis-enriched expression
pattern. Two of the male-linked loci were partially homologous to transposable element. Male-linked loci on the
putative Y sex chromosome were identified as an extremely small proportion of the genome. A PCR-based DNA
marker was developed to validate the male-linked loci in the bighead catfish. Our findings provide novel insights
into sex-determination mechanisms in clariid catfish and will contribute to genetic improvements in breeding

SNP

DArTseq™
Sex-determination system
Transposable element

programs.
1. Introduction whitespotted catfish (C. fuscus, Lacepede, 1803), bighead catfish
(C. macrocephalus, Giinther, 1864), and African catfish (C. gariepinus,
Of the 116 species of catfish classified in the family Clariidae, four Burchell, 1822) —are the most economically important in aquaculture in

species - walking catfish (Clarias batrachus, Linnaeus, 1758), Asia (Adan, 2000; Na-Nakorn and Brummentt, 2009; FAO, 2020).
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Catfish aquaculture production increased globally from 137,792,918 tin
2000 to 211,906,372 t in 2018 (FAO, 2021). Historically, bighead cat-
fish is favored for its taste and meat texture; however, its culture remains
limited because of its slow growth and high sensitivity to disease (Na-
Nakorn et al., 1993; Senanan et al., 2004). Crossbreeding between fe-
male bighead catfish and male African catfish has improved disease
resistance, and F; hybrids show rapid growth (Na-Nakorn et al., 1994;
Suprapto et al., 2017). As a result, a large number of hybrids are prop-
agated in aquaculture and represent the bulk of catfish production in
Thailand (Na-Nakorn, 2001). The F; hybrids are physically more
vigorous than either parental species but their mass production has been
limited by variable reproductive failure (Ponjarat et al., 2019). Previous
studies have determined the diploid chromosome numbers of the Afri-
can catfish and the bighead catfish to be 56 and 54, respectively, while
that of the F; hybrid is 55 (Agnese and Teugels, 2005; Maneechot et al.,
2016; Ponjarat et al., 2019). Sterile male F; hybrids show hybrid
dysgenesis, including spermatogenic disruption, with a decreased
number and/or malformation of mature sperm. This outcome might
result from the failure of homologous chromosome pairing and
abnormal spermatogenesis at pachytene and/or metaphase in the F;
hybrid, leading to meiotic arrest in male hybrids (Ponjarat et al., 2019).
Treatment with sex hormones, in an attempt to promote spermatogen-
esis, fails to overcome the sterility of male F; hybrids (Abol-Munafi et al.,
2006). By contrast, female F; hybrids are fertile and can produce large
numbers of backcross progeny, with both parental species showing low
embryo mortality (Tumennasan et al., 1997; Na-Nakorn et al., 2004;
Abol-Munafi et al., 2006). This might result from the less stringent
meiotic checkpoints during oogenesis or complex interaction between
two different sex-determination systems (Ponjarat et al., 2019). The
homomorphic sex chromosome of the African catfish exhibits co-
existence of the XX/XY and ZZ/ZW systems in Thailand (Nguyen
etal.,, 2021), whereas the bighead catfish probably expresses the XX/XY
system (Na-Nakorn, 1995). If sex determination of the bighead catfish
follows the XX/XY system, breeding programs of this species and its
hybrids can be improved through backcross breeding, inbreeding, se-
lective breeding, genetic manipulation, and production of monosex in-
dividuals (Gjedrem, 1997; Senanan et al., 2004; Argue et al., 2014;
Onyia et al., 2019). A proper understanding of the sex-determination
system in the bighead catfish is therefore necessary.

In the Clarias lineage, walking catfish, mudfish (C. anguillaris, Lin-
naeus, 1758), and West African catfish (C. ebriensis, Pellegrin, 1920)
have a ZZ/ZW sex-determination system (Pandey and Lakra, 1997; Eyo
and Effiong, 2005), whereas that of white spotted clarias is XX/XY. The
African catfish is the most complex species with XX/XY or ZZ/ZW sys-
tems in different geographical populations (Ozouf-Costaz et al., 1990;
Teugels et al., 1992; Liu et al., 1996; Eding et al., 1997; Galbusera et al.,
2000; Eyo and Effiong, 2005; Nguyen et al., 2021), or both systems in
the same population (Nguyen et al., 2021). In bighead catfish, no het-
eromorphic sex chromosomes have been identified (Siraj et al., 2009;
Maneechot et al., 2016; Ponjarat et al., 2019); however, gynogenesis
processes can be induced in bighead catfish to produce all-female stocks,
which is suggestive of a possible heterogametic (XX/XY) system (Na-
Nakorn, 1995). In the present study, to identify and confirm the sex-
determination system of the bighead catfish, we performed genome-
wide single-nucleotide polymorphism (SNP) analysis using Diversity
Arrays Technology (DArTseq™) of captive-bred individuals scored with
phenotypic sex. This method generated loci assorted to the particular sex
by identifying loci linked to sex-determining regions of the genome. A
molecular marker was developed to validate the sex-linked SNP pool.
The results provide insights to improve the understanding of sex-
determination systems in clariid catfish and could contribute to ge-
netic improvements in aquaculture breeding programs.
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2. Materials and methods
2.1. Specimens and DNA extraction

Fifteen male and 15 female bighead catfish individuals of standard
weight 1.7-2.0 kg and length 35-40 cm were sampled. The individuals
were selected randomly from a large breeding stock (Kasetsart Univer-
sity, Bangkok, Thailand) to avoid the possibility of a high incidence of
siblings in our genetic pool. Animal care and all experimental proced-
ures were approved by the Animal Experiment Committee, Kasetsart
University, Thailand (Approval no. ACKU61-SCI-026) and conducted in
accordance with the Regulations on Animal Experiments at Kasetsart
University. The sex of each individual was determined from external
morphology and internal examination of gonadal morphology (Kitano
et al., 2007; Esmaeili et al., 2017; Ponjarat et al., 2019). The fins were
removed for DNA extraction. Total genomic DNA was extracted
following the standard salting-out protocol as described previously with
slight modification for different tissues (Supikamolseni et al., 2015). The
quality of extracted DNA was evaluated by gel electrophoresis, and
samples with high-molecular-weight DNA were stored at —20 °C until
required for DArTseq™ library construction as described previously
(Koomgun et al., 2020; Laopichienpong et al., 2021; Nguyen et al.,
2021).

2.2. DArT sequencing and genotyping

The DArTseq™ methodology followed Jaccoud et al. (2001). Geno-
typing of multiple loci was performed using DArTseq™ (Diversity Arrays
Technology Pty Ltd., Canberra, ACT, Australia) for SNP loci and in silico
DATrT (variability in SNP loci generates presence/absence polymorphism
in restriction sites, so-called PA markers) to determine the candidate sex-
specific loci between male and female individuals. Approximately 100
ng DNA from each sample was used for development of the DArTseq™
arrays. The DNA samples were subjected to digestion/ligation reactions
as described previously (Kilian et al., 2012; Koomgun et al., 2020;
Laopichienpong et al., 2021; Nguyen et al., 2021). Sequences were
processed using proprietary DArTseq™ analytical pipelines (Ren et al.,
2015). Outputs generated by DArTsoft14 were filtered based on repro-
ducibility values, average count for each sequence (sequencing depth),
balance of average counts for each SNP allele, and call-rate (proportion
of samples for which the marker was scored) as described previously
(Koomgun et al., 2020; Laopichienpong et al., 2021; Nguyen et al.,
2021).

2.3. Marker selection and DArT sequencing analysis

Sex-linked or -specific loci were obtained from the analysis of SNP
co-dominant markers and PA dominant markers. For an XX/XY sex-
determination system, the SNP and PA loci sequenced for 70%, 80%,
90%, and 100% of males were included in a separate data set. Loci that
passed the 100% filtering criterion were designated as perfectly sex-
linked, whereas those passing at 70%-90% were considered moder-
ately sex-linked loci as described previously (Koomgun et al., 2020;
Laopichienpong et al., 2021; Nguyen et al., 2021). An opposite but
similar approach was conducted to target loci with a ZZ/ZW system. The
Hamming distance was calculated to determine the number of combined
loci between male and female individuals for pairwise differences in SNP
and PA loci using the “rdist” function in R version 3.5.1. Heatmaps were
generated using the ggplot2 package for R (R Core Team, 2019). The
Hamming distance, Cochran-Armitage trend test (CATT), and poly-
morphism information content (PIC), as an index for evaluation of the
informativeness of SNP and PA loci, were calculated as described pre-
viously (R Core Team, 2019; Sven and Klaus, 2019; Koomgun et al.,
2020; Laopichienpong et al., 2021; Nguyen et al., 2021). The probability
of candidate sex-linked loci showing random associations with sex under
a small sample size was estimated using the formula P; = 0.5", where P is
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the probability for a given locus, i is sex-linked, 0.5 is the probability
that either a female is homozygous or a male is heterozygous at a given
locus, and n is the number of individuals sequenced at the locus, as
described previously (Koomgun et al., 2020; Nguyen et al., 2021).

2.4. Comparison of potential sex-linked loci

For all candidate loci, the sex-linked loci under the criteria 90:10,
80:20, and 70:30 were designated as moderately sex-linked loci. Sig-
nificant differences among the three groups of loci were examined using
the chi-square test and the Kruskal-Wallis test using the stats R package
for PA loci and the Nemenyi test for SNP loci implemented in the
PMCMR package for R (R Core Team, 2019), based on the mean het-
erozygosity and standard deviation for each. All candidate loci were
plotted against each individual using the “glPlot” function in the dartR R
package. Principal coordinate analysis was performed to visualize the
relatedness between males and females based on all groups of moder-
ately sex-linked loci (Gruber and Georges, 2019; R Core Team, 2019).

2.5. Homology searches

For all sex-linked loci that met our criteria and showed a statistically
significant association with phenotypic sex, a Basic Local Alignment
Search Tool (BLAST) search was performed to investigate the homol-
ogies of the sex-linked SNP/PA loci against a selection of available
teleost fish genomes: Japanese rice fish (Oryzias latipes, Temminck and
Schlegel, 1850; accession no. GCA_002234675.1; Kasahara et al., 2007),
zebrafish (Danio  rerio, Hamilton, 1822; accession  no.
GCA_000002035.4; Broughton et al., 2001), Japanese pufferfish (Taki-
fugu rubripes, Temminck and Schlegel, 1850; accession no.
GCA_901000725.2; Elmerot et al., 2002), channel catfish (Ictalurus
punctatus, Rafinesque, 1818; accession no. GCA_001660625.1; Liu et al.,
2016), and an amniote reference genome (chicken, Gallus gallus, Lin-
naeus, 1758; accession no. GCA_000002315.5; International Chicken
Genome Sequencing Consortium, 2004). We selected the aforemen-
tioned species as representative reference genomes in the homology
search analysis due to the availability of high-quality gene annotations
and almost complete up-to-date assemblies (Takeda, 2008; Zhou, 2012;
Howe et al., 2013; Warren et al., 2017). The BLAST homology search
was performed in two rounds. First, we aligned sex-linked loci against
the reference teleost genome, and secondly we mapped the homologous
genes to clarify further their location on sex chromosomes of high-
quality annotated genomes representative vertebrate species. Using
the BLASTn program, sex-linked loci were used to search the NCBI
database (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and RepBase version
19.11 (Bao et al., 2015; Genetic Information Research Institute; https
://www.girinst.org/). This is a specialized nucleotide sequence collec-
tion for repeated or other significant sequences, which only reports E-
values lower than 0.005 and queries coverage with similarity of more
than 60%.

2.6. Development of sex-linked markers

To develop sex-linked markers, the candidate male-linked or male-
specific loci were selected to develop sex-linked PCR-based markers.
Six and seven SNP and PA loci, respectively, were selected randomly and
filtered using four criteria: no repeated sequences, one of two alleles in
accordance with the base in reference, SNP-free within the flanking
sequence, and flanking sequence >50 bp, following the method of
Laopichienpong et al. (2021). Applicability of the sex-linked PCR assays
was further tested and validated using all 30 bighead catfish specimens
as mentioned above. The PCR amplification was performed using 7.5 pl
of 2x PCR buffer KOD FX Neo, 2 mM dNTPs, 0.5 uM specific primers
(Table 1), 1.0 U KOD FX Neo (Toyobo Co., Ltd., Japan), and 25 ng
genomic DNA. The PCR protocol was as follows: initial denaturation at
98 °C for 5 min, followed by 35 cycles of 98 °C for 20 s, 58 °C for 45 s,
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Table 1
Primers used for development of sex-linked restriction fragment presence/
absence markers.

Primer Sequence (5'-3") Size (bp)
PA35641624 F TGCAGGCTGCCACCTATACA 208
PA35641624 R GCTGCTGCATGACCTTAACA

GapDH_F TCTTATGAGCACTGTCCATGCC 101
GapDH_R TAATGTTCTGGCTGGCACCAC

and 68 °C for 2 min, and final extension at 68 °C for 5 min. The PCR
products were visualized by electrophoresis in 1% agarose gel. The
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) gene was used as
a positive PCR control marker using primers designed based on the
conserved sequence of three teleosts (channel catfish, zebrafish, and
maraena whitefish Coregonus maraena, Bloch, 1779) to verify that the
absence of PCR products in females was not caused by failure of the PCR
reactions (Ponjarat et al., 2019). To determine the conservation of sex-
linked loci, all sex-linked PCR markers were applied to 30 African cat-
fish individuals, with genomic DNA derived from our previous study
(Nguyen et al., 2021). The PCR reaction was performed as mentioned
above.

3. Results
3.1. Determination of sex-linked loci in bighead catfish

We sequenced 15,315 SNP loci and 12,311 PA loci. The PIC values
ranged from 0.37 to 0.50 for all loci, which indicates that the overall
distribution of PIC values was asymmetrical and skewed toward the
higher values. To determine whether XX/XY or ZZ/ZW sex determina-
tion was exhibited in bighead catfish, we compared a number of SNP and
PA loci after filtering with a gradually varying set of criteria. For the ZZ/
ZW type, filtering using the criterion of 30:70 male:female resulted in 31
SNP loci and 54 PA loci as moderately female-linked. Proportional
pairwise Hamming distances between males and females using the
moderately sex-linked SNP and PA loci showed within-sex distances of
0.427 + 0.013 in males and 0.403 + 0.014 in females for SNP loci, and
0.383 + 0.013 in males and 0.367 + 0.012 in females for PA loci.
Between-sex distances were 0.713 + 0.008 for SNP loci and 0.669 +
0.008 for PA loci. The CATT results verified a significant association
with phenotypic sex for 30 SNP loci (> = 2.3-16.4, p < 0.001) and 54
PA loci (Xz = 5.8-16.1, p < 0.001). The criterion of 20:80 male:female
resulted in designation of seven SNP loci and seven PA loci as moder-
ately female-linked. Proportional pairwise Hamming distances between
males and females using the moderately sex-linked SNP and PA loci
(under the null exclusive model) showed within-sex distances of 0.408
+ 0.026 in males and 0.354 + 0.021 in females for SNP loci, and 0.290
+ 0.017 in males and 0.302 + 0.020 in females for PA loci. Between-sex
distances were 0.764 + 0.013 for SNP loci and 0.729 + 0.013 for PA loci.
The CATT verified a significant association with phenotypic sex for
seven SNP loci (x2 = 10.8-16.4, p < 0.001) and seven PA loci (XZ =
10.8-16.1, p < 0.001; Fig. 1). After filtering using the criteria 10:90 and
0:100 male:female, no significant SNP and PA loci were detected for sex-
linked loci (Fig. 2, Table 2). Chi-square tests show that the 30:70 and
20:80 filtering criteria indicated no significant differences in males (32
=5.230 x 10 %2, p = 1) and females (x> = 4.659 x 10 32, p = 1) for PA
loci. Kruskal-Wallis tests show that these filtering criteria produced no
significantly different percentages of heterozygosity in males (H = 1.23,
p = 0.267) and females (H = 0.89, p = 0.346) for SNP loci (Fig. S1).
Pairwise comparisons using the Nemenyi test with chi-square approxi-
mation for independent samples reveal that the 30:70 and 20:80 filtering
criteria resulted in no significant difference in heterozygosity compared
with the other filters for males (p = 0.15) and females (p = 0.24).

By contrast, for the XX/XY type, filtering using the criterion of 70:30
male:female yielded 49 SNP loci and 72 PA loci that were designated
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Fig. 1. Hamming distances between male and female individuals of bighead catfish (Clarias macrocephalus, Giinther, 1864). The loci were filtered under different
criteria. (A) Single- nucleotide polymorphic (SNP) loci filtered under the criterion 70:30 (male:female), (B) Restriction fragment presence/absence (PA) loci under
the criterion 70:30 (male:female), (C) SNP loci under the criterion 80:20 (male:female), (D) PA loci under the criterion 80:20 (male:female), (E) SNP loci under the
criterion 30:70 (male:female), (F) PA loci under the criterion 30:70 (male:female), (G) SNP loci under the criterion 20:80 (male:female), and (H) PA loci under the

criterion 20:80 (male:female).

male-linked. Proportional pairwise Hamming distances between male
and female bighead catfish using sex-linked SNP and PA loci (under the
null exclusive model) show lower within-sex distances of 0.401 + 0.009
in males and 0.482 + 0.012 in females for SNP loci, and 0.347 + 0.011 in
males and 0.379 + 0.012 in females for PA loci. Between-sex distances of
0.698 + 0.006 for SNP loci and 0.676 + 0.007 for PA loci were observed.
CATT results verified significant associations with phenotypic sex for 49
SNP loci (3% = 4.3-21.7, p < 0.001) and 72 PA loci (x* = 5.8-22.9, p <
0.001). Seven SNP loci and 17 PA loci were associated with males based
on the criterion of 80:20 male:female. Proportional pairwise Hamming
distances between male and female bighead catfish using sex-linked SNP
and PA loci showed lower within-sex distances 0.320 £ 0.018 in males
and 0.450 =+ 0.019 in females for SNP loci, and 0.263 + 0.016 in males
and 0.323 + 0.014 in females for PA loci. Between-sex distances of
0.754 + 0.012 for SNP loci and 0.737 =+ 0.009 for PA loci were observed.
CATT results verified significant associations with phenotypic sex for
seven SNP loci (2 = 10.8-21.0, p < 0.001) and 17 PA loci (y*> =
10.8-20.0, p < 0.001; Fig. 1). After filtering with the criteria 90:10 and
100:0 male:female, no significant sex-linked SNP or PA loci were
observed (Fig. 2, Table 3). Chi-square tests show that the 70:30 and
80:20 filtering criteria indicated no significant differences in males (y?
=1.893 x 10732, p = 1) and females (4> = 6.685 x 1072, p = 1) for PA
loci. Kruskal-Wallis tests show that these filtering criteria yielded no
significantly different percentages of heterozygosity in males (H = 1.29,
p = 0.256) and females (H = 0.692, p = 0.406) for SNP loci (Fig. S1).
Pairwise comparisons using the Nemenyi test with chi-square approxi-
mation for independent samples reveal that the 70:30 and 80:20 filtering
criteria resulted in no significant difference in heterozygosity compared
with the other filters for males (p = 0.48) and females (p = 0.59). A
glPlot revealed that the sample group showed similarity between sexes
when moderately sex-linked loci were considered in both XX/XY and
ZZ/ZW sex-determination systems (Fig. 3).

For a range of sample sizes and loci, a sample of 30 phenotypically
sexed individuals is essential to minimize the probability of selecting less
than one spurious sex-linked marker. The P; probability that a single
locus exhibited a sex-linked pattern by chance was 9.31 x 1071°.
Considering that we analyzed the full data set (no filtering) of 27,626
loci (including SNP and PA loci), this probability translates into an

expected number of perfect sex-linked loci according to chance alone of
2.57 x 107>,

3.2. Homology of putative sex-linked loci

With regard to the ZZ/ZW sex-determination system, female sex-
linked loci of bighead catfish showed sequence homology with the
Japanese rice fish, Japanese puffer, zebrafish, channel catfish, and
chicken genomes on the basis of global BLAST analyses of NCBI data-
bases (Table S1). Eight of the 84 SNP and PA loci were homologous with
the putative genes RUNX2 (runt-related transcription factor 2), PHKA1
(phosphorylase kinase regulatory subunit alpha 1), CNNM4 (metal
transporter CNNM4), ABI2 (Abl interactor 2), GFI1 (zinc finger protein
Gfi-1), ATG9A (Autophagy-related protein 9A), RTN4RL2 (reticulon 4
receptor-like 2), and ROBO4 (roundabout guidance receptor 4;
Table S2). Moreover, four SNP loci and nine PA loci of the 84 loci show
partial homology with transposable elements (TEs), consisting of three
loci with similarity to Tcl/mariner families, one locus to a Kolobok
element (a superfamily of DNA transposons), seven loci to Gypsy fam-
ilies, one locus to short interspersed nuclear elements, and one locus to
chicken repeat 1 (Table S3). One locus filtered under the criterion 20:80
male:female was identified as a Gypsy family member (Table S4). By
contrast, with regard to the XX/XY sex-determination system, male sex-
linked loci of the bighead catfish show sequence homology with the
Japanese rice fish, Japanese puffer, zebrafish, channel catfish, and
chicken genomes on the basis of global BLAST analyses of NCBI data-
bases (Table S5). Sixteen of 121 SNP and PA loci were homologous with
the putative genes GOLGA4 (golgin subfamily A member 4), ARFRPI
(ADP ribosylation factor related protein 1), NSMCE2 (E3 SUMO-protein
ligase NSE2), FGFRK1 (fibroblast growth factor receptor-like 1), DNAH7
(dynein heavy chain 7, axonemal), SMARCAD1 (SWI/SNF-related
matrix-associated actin-dependent regulator of chromatin subfamily A
containing DEAD/H box 1), LMBRD2 (G-protein coupled receptor-
associated protein LMBRD2), CNOT4 (CCR4-NOT transcription com-
plex subunit 4-like), CHD3 (chromodomain-helicase-DNA-binding pro-
tein 3), TFAP2B (transcription factor AP-2-beta), WDR43 (WD repeat-
containing protein 43), ETV6 (transcription factor ETV6), MED8
(mediator of RNA polymerase II transcription subunit 8), TRAMILI
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Table 2
DArT analysis for 15 male and 15 female individuals of bighead catfish (Clarias macrocephalus, Giinther, 1864; ZZ/ZW sex-determination type).
30:70 male:female 20:80 male:female 10:90 mal 1 0:100 mal 1
SNP* PA” SNP* PA SNP'  PA" SNP'  PA”
Total number of DArT analyses 15,315 12,311 15,315 12,311 - - - -
Sex-specific loci 30 54 7 7 - - - -
Overall mean distance between males and females 0.713 £ 0.008 0.669 + 0.008 0.764 + 0.013 0.729 + 0.013 - - - -
Overall mean distance within females 0.403 + 0.014 0.367 + 0.012 0.354 = 0.021 0.302 + 0.02 - - - -
Overall mean distance within males 0.427 £+ 0.013 0.383 £ 0.013 0.408 £ 0.026 0.290 + 0.017 - - - -

# SNP, single-nucleotide polymorphic loci.

b PA, Restriction fragment presence/absence loci.

(translocating chain-associated membrane protein 1-like 1), PCDH12 chromosome (Table S5).
(protocadherin-12), and GTSFIL (gametocyte-specific factor 1-like;
Table S6). Twelve SNP loci and 12 PA loci filtered under the criterion
70:30 male:female show partial homology with TEs consisting of 11 loci
to Tcl/mariner families, one locus to the hAT transposon superfamily,
one locus to Helitron, one locus to Zisupton, one locus to the transposon
piggyBac, five loci to Gypsy families, one locus to short interspersed
nuclear elements, one locus to an L2 clade of non-LTR retrotransposons,
one locus to the retroelement Rex1, and one locus to the endogenous
retroviruses 2 superfamily (Tables S7 and S8). One PA locus of the
bighead catfish was homologous to the genomic region of the chicken Z

3.3. PCR-based approach for validation of sex-specific loci

A PCR-based method was applied to validate the sex-linked loci in
bighead catfish. One of the 13 PA loci (locus id: 35641624) was vali-
dated (Table 1). Only male individuals were identified by a single 208 bp
DNA band for the PA35641624 marker (locus id: 35641624), and no
specific DNA band was identified in females (Fig. 4). Partial fragments of
the GAPDH gene were amplified in all males and females as a positive
single 101 bp DNA band in order to examine the failure to amplify the
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Table 3
DAIT analysis for 15 male and 15 female individuals of bighead catfish (Clarias macrocephalus, Giinther, 1864; XX/XY sex-determination type).
70:30 male:female 80:20 male:female 90:10 mal, il 100:0 male:femal
SNP* PA” SNP* PA" SNP*  PA" SNP*  PA
Total number of DArT analyses 15,315 12,311 15,315 12,311 - - - -
Sex-specific loci 49 72 7 17 - - - -
Overall mean distance between males and females 0.698 + 0.006 0.676 + 0.007 0.754 + 0.012 0.737 + 0.009 - - - -
Overall mean distance within females 0.482 + 0.012 0.379 £ 0.012 0.450 + 0.019 0.323 £ 0.014 - - - -
Overall mean distance within males 0.401 + 0.009 0.347 £ 0.011 0.320 + 0.018 0.263 + 0.016 — - - -
@ SNP, single-nucleotide polymorphic loci.
b PA, Restriction fragment presence/absence loci.
XX/XY sex-determination system ZZ/ZW sex-determination system
A 70:30 80:20 70:30 80:20
] 2
o} [}
= =
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° ] i
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: :
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Fig. 3. (A) Index of 121 sex-linked loci filtered under the criterion 70:30 (male:female; XX/XY sex-determination system), and (B) index of 84 sex-linked loci filtered
under the criterion 30:70 (male:female; ZZ/ZW sex-determination system). The plots were generated using the “glPolt” function in the R package dartR (Gruber and
Georges, 2019; R Core Team, 2019). Pink shading indicates reference allelic homozygosity, green is indicative of heterozygosity, and blue indicates SNP allelic
homozygosity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Agarose gel electrophoresis of PCR products of the validation test of sex-linked loci in male and female individuals of bighead catfish (Clarias macrocephalus,

Giinther,

sex-linked loci from primer sets (data not shown). To determine the
conservation of sex-linked loci, all the sex-linked PCR markers were
applied to African catfish, and a single 208 bp DNA band was detected in
both males and females (Fig. S2).

4. Discussion

Hybridization of parental fish that differ in their chromosome
number can produce fertile hybrids, as observed for North African cat-
fish (C. gariepinus, 2n = 56) x Vundu catfish (Heterobranchus longifilis,
Valenciennes, 1840, 2n = 52; Legendre et al., 1992). The F; hybrids
between female bighead catfish and male African catfish exhibit rapid
growth and high resistance to disease, but their mass production is

1864). Molecular size of DNA is indicated in the left lane using OneMARK B ladder (Bio-Helix Co., Ltd., Taipei, Taiwan).

limited by reproductive failure (Ponjarat et al., 2019). To increase the
hybrid broodstock, large numbers of female bighead catfishes, native to
Southeast Asia, are required annually to produce the hybrid; however,
the captive population of the pure line is limited, and the wild popula-
tion has declined as a result of urbanization and contamination of the
hybrid in the wild (Senanan et al., 2004; Duong et al., 2017). Only fe-
male hybrids are fertile, with the potential to produce large numbers of
backcross progeny that are fertile and showed low embryo mortality
(Na-Nakorn et al., 2004; Abol-Munafi et al., 2006). Thus, a compre-
hensive understanding of sex determination in the African catfish and
bighead catfish is important. The diploid gynogenesis in bighead catfish
produces all females, suggesting XX/XY sex-determination (Na-Nakorn,
1995). In the present study, DArTseq™ technology was applied to a
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large number of SNP and PA loci to enable prediction of sex-linked loci
for bighead catfish using a sample size of 30 individuals (15 males and
15 females). We identified 24 SNP or PA markers for male-linked loci
and 14 SNP or PA markers for female-linked loci with the criterion 80:20
male:female across all specimens examined. Although many false-
positive signals might be expected from such specimens due to their
more diverse genetic background (Gamble et al., 2015), the present data
show the feasibility of the approach. The probability that one locus will
show sex linkage spuriously was 9.31 x 10710 from the full data set
(without filtering) of 27,626 loci (including SNP and PA loci), whereas
the expected amount of sex linkage was estimated to be 2.57 x 107>,
Identification of any sex-linked loci by chance thus seems unlikely. The
present results indicate that the sex determination of bighead catfish
tends to be the XX/XY system.

Homology searches of male-linked loci reveal that two of the 24 SNP
or PA male-linked loci showed homology with partial sex chromosomes
in Z chromosome of the western terrestrial garter snake (Thamnophis
elegans) and chicken (Gallus gallus; Tables S5 and S9), whereas no
female-linked SNP or PA loci were matched. Genomic convergence has
also been detected by comparative genomics studies in which unrelated
sex chromosomes share sex chromosomal linkage homologies across
distantly related species (Srikulnath et al., 2009a, 2009b, 2013, 2014,
2015; Ezaz et al., 2017; Singchat et al., 2018, 2020a, 2020b; Ahmad
et al., 2020; Koomgun et al., 2020; Laopichienpong et al., 2021; Nguyen
et al., 2021). It is likely that convergent evolution of sex chromosomes
across distantly related taxa has led to genomic elements that are
particularly efficient in a sex-determination role (Singchat et al., 2020c).
Interestingly, the PA35631435 locus showed homology with the GTSFIL
gene, which shows a testis-enriched expression pattern in comparison
with 26 other human tissues (Djureinovic et al., 2014). These findings
suggest collectively the presence of an XX/XY sex-determination system
in bighead catfish, supporting the results of diploid gynogenesis with all
females (Na-Nakorn, 1995). However, we have no direct evidence that
this gene is involved in sex determination for teleosts or other verte-
brates, and additional information from genomic analysis and tran-
scriptomic activity of teleosts is required to test this hypothesis.
Moreover, two of the 24 male-linked SNP or PA loci filtered under the
criterion 80:20 male:female were identical to TEs, such as Tc1l/mariner
and Zisupton, which are frequently distributed on sex chromosomes in
half-smooth tongue sole (Cynoglossus semilaevis, Giinther, 1873),
southern platyfish (Xiphophorus maculatus, Giinther, 1866), Apareiodon
sp., canivete (Parodon hilarii, Reinhardt, 1867), and pongo characin
(P. pongoensis, Allen, 1942; Bohne et al., 2012; Zhou, 2012; Chen et al.,
2014; Schemberger et al., 2016). Only one female-linked SNP locus
filtered under the criterion 20:80 male:female was homologous to Gypsy
families. Transposable elements can be dispersed on many chromosomes
or throughout the entire genome, and amplification of the elements is
often observed on sex chromosomes in many organisms (Chalopin et al.,
2015; Schemberger et al., 2016; Ahmad et al., 2020; Carducci et al.,
2020; Singchat et al., 2020b; Koomgun et al., 2020; Yoshido et al., 2020;
Laopichienpong et al., 2021). Activity of TEs may play an important role
in sex-chromosome differentiation through mechanisms of chromo-
somal rearrangement or heterochromatin propagation as a variegated
type of position effect (Chalopin et al., 2015; Dechaud et al., 2019).
Moderately sex-linked loci filtered under the 70:30 and 80:20 (male:
female) criteria indicate partial recombination between X and Y sex
chromosomes. These loci are relatively close to potential male-
determining regions but not intimately connected.

Of the 24 SNP or PA sex-specific loci discovered independently in
bighead catfish, one of the 13 male-linked PA loci was validated. A non-
specific band was detected in one female individual of bighead catfish,
possibly connected with the stability of the primer binding site. Similar
results were observed in Siamese cobra (Naja kaouthia, Lesson, 1831),
pygmy cormorant (Phalacrocorax pygmeus, Pallas, 1733), great cormo-
rant (P. carbo, Linnaeus, 1758), and European shag (P. aristotelis, Lin-
naeus, 1761), which exhibit heteromorphic sex chromosomes (Thanou
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etal., 2013; Laopichienpong et al., 2021). The remaining 12 male-linked
PA markers, detected only in a portion of the samples, were weakly sex-
linked among the adult samples and might be less reliable as sex-linked
markers (data not shown). Failure of the PCR validation step has often
been observed after DArTseq™ or RADseq bioinformatics analysis
(Gamble et al., 2015; Jiang et al., 2020; Laopichienpong et al., 2021).
This outcome might result from conserved regions in both sexes of se-
quences adjacent to sex-specific restriction sites (Gamble, 2016). The
methods of polymerase chain reaction-restriction fragment length
polymorphism or melting curve analysis, which offer more sensitive
detection, might be alternative methods to use for the validation step.
The validated male-linked PA marker was amplified and determined the
sex specifically in bighead catfish but could not differentiate between
male and female individuals in African catfish. Cryptic intra-
chromosomal rearrangements or mutations on sex chromosomes may
have occurred between two catfish species (the African catfish and the
bighead catfish) after divergence. Similar phenomena have been
observed in bighead carp (Hypophthalmichthys nobilis, Richardson,
1845), silver carp (H. molitrix, Valenciennes, 1844), mud crab species
(Scylla paramamosain, Estampador, 1950; S. tranquebarica, Fabricius,
1798; and S. serrata, Forsskal, 1755), Siamese cobra, and Indochinese
spitting cobra (N. siamensis, Laurenti, 1768; Liu et al., 2018; Shi et al.,
2018; Laopichienpong et al., 2021). Analysis of additional catfish spe-
cies are required to examine the presence of markers to test this
hypothesis.

Both XX/XY and ZZ/ZW sex-linked loci were observed occasionally
in the same bighead catfish individual (Table S10). If recombination
occurs frequently in the region of the homomorphic sex chromosomes,
female heterozygous sex-linked loci may not always indicate female
heterogametic sex determination. By contrast, the X-linked gene, could
be homologous to the male-linked marker in other species and indicate a
different sex determination system. DMRTI is an ancient sex deter-
mining gene, found first in invertebrates (Ferguson-Smith, 2007). The
bird Z chromosome includes the highly conserved DMRT1 gene; how-
ever, a duplicated copy of DMRT1 was identified on the medaka Y sex
chromosome (Nanda et al., 1999; Matsuda et al., 2002). Moreover,
DMRT1 is a putative male determination gene in Cynoglossus semilaevis
and the DMRT]1 gene is also a candidate sex determination gene on the Y
chromosome in Scatophagus argus (Cui et al., 2017; Mustapha et al.,
2018). Another possible explanation for this is the coexistence of the
XX/XY and ZZ/ZW systems in this species. This might represent evi-
dence of sex-chromosome turnover, which is often observed in teleosts
(Myosho et al., 2015; Roco et al., 2015; Baroiller and D’Cotta, 2016).
Our previous analysis of the African catfish indicates the presence of XX/
XY co-existent with the ZZ/ZW type in sampled populations from
Thailand (Nguyen et al., 2021). Similar cases were observed in the
southern platyfish and the glass knifefish (Eigenmannia virescens,
Valenciennes, 1836; Almeida-Toledo et al., 2001; Volff and Schartl,
2001; Mariotto et al., 2004; Mariotto and Miyazawa, 2006; Fernandes
et al., 2019). An additional well-known example of ZW/XY co-
occurrence is certain species of cichlids, such as Nile tilapia (Oreochro-
mis niloticus, Linnaeus, 1758), blue tilapia (O. aureus, Steindachner,
1864), Burton’s mouth-brooder (Astatotilapia burtoni, Giinther, 1894),
and zebra red dorsal (Metriaclima pyrsonotos, Stauffer Jr. et al., 1997).
These species have a male heterogametic (XY) system and a female
heterogametic (ZW) system in different linkage groups (Ser et al., 2010;
Cnaani, 2013; Moore and Roberts, 2013; Conte et al., 2017; Gammer-
dinger and Kocher, 2018). In the present study, based on comparison
among several teleost reference genomes, sex-linked loci of bighead
catfish were not all located in the same linkage group. Teleost sex
chromosomes are often homomorphic (i.e., cytologically indistinguish-
able), which is problematic for genome-wide SNP analysis (Otake et al.,
2010; Gammerdinger and Kocher, 2018). However, this seems to facil-
itate frequent sex-chromosome turnover (Gammerdinger and Kocher,
2018; Teda et al., 2018). Variation in fish sex-chromosome systems has
been recorded among closely related species or between different
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populations of the same species (Takehana et al., 2008; Ross et al., 2009;
Ser et al., 2010; Cnaani, 2013). In the clariid catfish lineage, most sex-
chromosome systems are of the ancestral type, ie., the ZZ/ZW system
(Agnese et al., 1990; Volckaert and Agnese, 1996; Fig. 5). Nguyen et al.
(2021) asserted that the ZW group with differentiated sex chromosomes
of the African catfish might be distributed in different continents,
whereas the turnover of sex-chromosome systems might have occurred
in ancestral homomorphic ZW sex chromosomes, which resulted in the
XY group on a different continent. Compared with the African catfish,
the bighead catfish is phylogenetically more primitive. These two spe-
cies diverged approximately 12 million years ago (Agnese and Teugels,
2005; Hedges et al., 2015). Turnover of sex-chromosome systems may
have occurred in ancestral homomorphic ZZ/ZW sex chromosomes and
resulted in the proto XX/XY group in this lineage. Sex chromosomes of
the bighead catfish have undergone early state differentiation, resulting
in the presence of cryptic sex chromosomes. To test these hypotheses, it
is necessary to identify potential populational variation in sex linkage
across these loci. The possibility exists of within-species sex-chromo-
some turnover, which could be further tested using other methods such
as genome assembly. However, the influence of noise from high-
throughput sequencing technologies and/or random biological varia-
tion/association cannot be ruled out, especially with small sample sizes
that might show sex-linked loci outside the sex-determination regions or
even in autosomes (Gamble et al., 2017).

Sex determination of the African catfish and bighead catfish is
important to improve genomic manipulation of processes such as gy-
nogenesis or androgenesis. Hormone treatment procedures following
early molecular sexing may be economically important for species
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aquaculture. The next phase of this study requires development of
additional PCR-based markers for sex identification to provide a geno-
typic tool for practical sexing of individuals, which will allow accurate
detection of sex in populations through insight into the evolutionary
history of the Y chromosome. In addition, gene interaction and trans-
mission mechanisms of sex determination and sex-linked loci from
parental species to the F; hybrid require further investigation.

5. Conclusions

We identified male-linked loci on the putative Y sex chromosome of
the bighead catfish using DArTseq™ technology given the small portion
of the genome. The results suggest the presence of XX/XY sex determi-
nation. One male-linked locus shows homology with the GTSFIL gene,
which revealed a testis-enriched expression pattern, whereas one other
male-linked locus shows partial homology with Z sex chromosomes of
the western terrestrial garter snake and chicken. The PCR-based
markers, derived from male-linked loci in bighead catfish, provide in-
formation on the putative Y sex chromosome, which represents an
archetype in the understanding of sex-linked loci on homomorphic X
and Y sex chromosomes. Whether or not the location of large genomic
regions between X- and Y-specific fragments is associated with the dif-
ferentiation of sex chromosomes and sex-determination regions remains
unclear. A population based study with a relatively even ratio of sexes or
various bighead catfish populations from the wild and captivity is
required to minimize the probability of false positives. The number of
samples needed may also depend on the amount of polymorphism pre-
sent in a population. Chromosome mapping of sex-linked loci on
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Fig. 5. Phylogenetic tree depicting species relationships and timing of diversification in the genus Clarias together with the number of chromosomes and sex-
determination system of the species where known (Ozouf-Costaz et al., 1990; Teugels et al., 1992; Na-Nakorn, 1995; Bakhoum, 1996; Liu et al., 1996; Eding
et al., 1997; Pandey and Lakra, 1997; Kovacs et al., 2001; Agnese and Teugels, 2005; Eyo and Effiong, 2005; Malla and Ganesh, 2009; Okonkwo and Obiakor, 2010;

Awodiran et al., 2015; Hedges et al., 2015; Maneechot et al., 2016).
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metaphase chromosomes using fluorescence in situ hybridization is
required to determine their positions on the sex chromosomes of
bighead catfish. A complete high-quality genome assembly for the
bighead catfish is required to elucidate the sex-determination mecha-
nism further. This approach will provide basic information with which
to explore the sex-determination mechanism and identify potential sex-
determination regions in clariid catfish.
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The African catfish (Clarias gariepinus) may exhibit the co-existence of XX/XY and ZZ/ZW
sex-determination systems (SDSs). However, the SDS of African catfish might be
influenced by a polygenic sex-determination (PSD) system, comprising multiple
independently segregating sex “switch” loci to determine sex within a species. Here,
we aimed to detect the existence of PSD using hybrid. The hybrid produced by crossing
male African catfish with female bighead catfish (C. macrocephalus, XX/XY) is a good
animal model to study SDSs. Determining the SDS of hybrid catfish can help in
understanding the interactions between these two complex SDS systems. Using the
genotyping-by-sequencing “DART-seq” approach, we detected seven moderately male-
linked loci and seventeen female-linked loci across all the examined hybrid specimens.
Most of these loci were not sex-linked in the parental species, suggesting that the hybrid
exhibits a combination of different alleles. Annotation of the identified sex-linked loci
revealed the presence of one female-linked locus homologous with the B4GALNTT gene,
which is involved in the spermatogenesis pathway and hatchability. However, this locus
was not sex-linked in the parental species, and the African catfish might also exhibit PSD.

Keywords: catfish, hybrid, SNP, polygenic sex-determination system, PSD

INTRODUCTION

Sex determination is a basic process in the evolution of sexual reproduction and diverse sex-
determination systems (SDSs). Genetic sex determination systems, multifactorial polygenic sex-
determining mechanisms, and environmental sex determination systems are found across taxa (Ezaz
et al, 2016). Teleosts show a large diversity of SDSs, whereas turnovers or transitions often occur in
many vertebrates (Pennell et al., 2018). ZZ/ZW and XX/XY are the common SDSs in the female and
male heterogametic systems, and they have evolved repeatedly and independently in the lineage. This
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results in the presence of rapidly evolving SDSs in closely related
species (Gammerdinger and Kocher, 2018; Nguyen et al., 2021a;
Nguyen et al, 2021b). Thus, a study of sister taxa retaining
divergent sex chromosome systems would be informative
when examining SDS evolution. Among the 115 species of
clariid fish (Clariidae), some have either male heterogametic or
female heterogametic sex determination systems (Pandey and
Lakra, 1997; Nguyen et al., 2021a). Both heterogametic systems
are present together, including multiple loci and sex
chromosomes in the lineage. Varying SDSs have been
observed in African catfish (Clarias gariepinus, Burchell, 1822)
based on their geographical location: a ZZ/ZW system in Africa, a
XX/XY system is indicated in some populations from Israel,
Hungary, and China, or both systems in the same population
in Thailand (Teugels et al., 1992; Eding et al,, 1997; Eyo and
Effiong, 2005; Nguyen et al., 2021a). The SDS of African catfish
might be influenced by a multifactorial, polygenic sex-
determination (PSD) system that occurs in varied species. The
occurrence of natural, multiple and independent “switch” loci or
alleles specify the segregation of sex within a species. PSD can also
occur by modifying current sex chromosomes to generate a third
functional sex chromosome at the same locus, or by modifying
autosomal loci in other regions of the genome to generate a novel
process for gonad development regulation. A well-known
example is observed in platyfish (Xiphophorus maculatus,
Guinther, 1866), with some populations showing segregation of
male Y chromosome alleles and female W chromosome alleles at
the same chromosome pair (Volff and Schartl, 2001). However,
the genetic architecture contributing to variations in SDSs is not
completely understood, especially in the few known examples of
PSD in teleosts (Roberts et al., 2016). Clarification of the genetic
structure of SDSs is essential to understand the evolutionary
mechanisms and their influence on the processes of speciation
(Qvarnstrom and Bailey, 2009), particularly in species without
heteromorphic sex chromosomes.

Interspecific hybridization has successfully improved the
growth rate, body size, disease resistance, and tolerance to
stressors in aquaculture (Suprapto et al., 2017). For instance,
male African catfish (C. gariepinus, 2n = 56) have been crossed
with female bighead catfish (Clarias macrocephalus, Giinther,
1864, 2n = 54 with XX/XY) to produce fast growth and improved
disease resistance traits in the resulting hybrids (2n = 55) (Na-
Nakorn, 1995; Chaivichoo et al., 2020; Nguyen et al., 2021a;
Nguyen et al., 2021b). However, reproductive failure can occur as
a result of chromosomal incompatibility with parental genomes.
This can culminate in spermatogenic breakdown in F, male
hybrids, leading to subsequent elimination by apoptosis and
limiting mass production (Ponjarat et al., 2019). By contrast,
F, female hybrids can produce copious backcross offspring with
low embryo mortality (Na-Nakorn et al., 2004; Abol-Munafi
et al, 2006) due to differences in the checkpoint systems in
meiotic cells. This may be more stringent during the development
of mature spermatozoa than production or development of an
ovum or as a result of complex interactions between two different
SDSs (Ponjarat et al., 2019). Thus, the male C. gariepinus x female
C. macrocephalus hybrid is a good animal model to study the
evolutionary process of SDSs in teleosts. In this study, we
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proposed the following two hypotheses: 1) the hybrid might
possess the dominant SDS from male African catfish when Y
or W sex chromosomes is present in different individuals, or 2)
the hybrid might exhibit new candidate loci or a combination of
different alleles due to the influence of PSD found in male African
catfish. To determine how sex determination affects the viability
of hybrid catfish, genome-wide single-nucleotide polymorphism
(SNP) analyses were performed using Diversity Arrays
Technology (DArTseq™) of captive-bred individuals scored
with phenotypic sex, as described by Nguyen et al. (2021a)
and Nguyen et al. (2021b). Results will provide insights to
improve the understanding of SDSs in clariid fish.

MATERIALS AND METHODS

Adult individuals were collected as 15 male and 15 female
hybrids, chosen randomly from a breeding stock (Kasetsart
University, Bangkok, Thailand) to reduce the possibility of a
high occurrence of siblings in the genetic pool. The hybrids were
produced from pure breeding stock maintained for 10 years. Six
generations of the breeding stock were bred in captivity. The sex
of each individual was identified based on external morphology
and internal examination of gonadal morphology (Esmaeili et al.,
2017; Ponjarat et al., 2019). Animal care and all experimental
procedures were approved by the Animal Experiment
Committee, Kasetsart University, Thailand (Approval no.
ACKU61-SCI-026) and concurred with the Regulations on
Animal Experiments at Kasetsart University. The dorsal fins of
each individual were removed for DNA extraction and total
genomic DNA. DArT sequencing and genotyping, marker
selection, DArT sequencing analysis, estimation of expected
sex-linked markers, comparison of potential sex-linked loci,
and homology searching processes were performed.

Total Genomic DNA

Total genomic DNA was extracted following the salting-out
protocol (Supikamolseni et al, 2015). The quality of each
extracted DNA  specimen was assessed using gel
electrophoresis for the presence of high-molecular-weight
DNA. All samples were stored at —20°C until required for
DArTseq™ library construction (Laopichienpong et al., 2021).

DArT Sequencing and Genotyping

Genotyping of multiple SNP loci was accomplished using
Diversity Arrays Technology Pty Ltd. (DArTseq™) in
Canberra, ACT, Australia following the methodology of
Jaccoud et al. (2001) and Koomgun et al. (2020). The
candidate sex-specific loci among male and female individuals
were then determined using in silico DArT (variability in SNP loci
generates presence/absence polymorphism in restriction sites, so-
called PA markers). Approximately 100 ng of total DNA from
each sample was used to develop the DArTseq™ arrays. The
DNA samples were subjected to digestion and ligation reactions,
as described by Kilian et al. (2012) and digested using PstI and
Sphl. The ligation reactions were performed using two adaptors
as a Pstl compatible adaptor including an Illumina flow-cell
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attachment sequence, a sequencing primer and a unique barcode
sequence, and a Sphl compatible adaptor consisting of an
Ilumina flow-cell attachment region. The ligated fragments
were then processed by 30 cycles of PCR (94°C for 20's, 58°C
for 30's, and 72°C for 45 s), with a final extension step at 72°C for
7 min. Equimolar amounts of amplification products from each
individual were pooled and applied to Illumina’s proprietary cBot
(http://www.illumina.com/products/cbot.html) ~ bridge PCR,
followed by sequencing on the Illumina HiSeq 2000 platform.
The single read sequencing was run for 77 cycles. Sequences were
processed using proprietary DArTseq analytical pipelines (Ren
et al,, 2015). Poor-quality sequences were filtered by processing
the HiSeq 2000 output (FASTQ file). Two quality thresholds were
applied to the barcode region for stringent selection as minimum
Phred pass score of 30, and a 75% minimum pass length to allow
parsing of sequences into specific sample libraries. Relaxed
thresholds were applied to the remainder of the sequence as
minimum Phred pass score 10 and minimum pass length 50%.
Approximately 2,000,000 sequences per barcode/individual were
recognized and used in marker calling. Finally, identical
sequences were combined into “fastqcoll files” and used in the
secondary pipeline (DArTsoft14) for proprietary SNP and PA
loci calling, with the “reference-free” algorithm implemented in
DArTsoft14. Sequence clusters were then parsed into SNP and in
silico DArTseq™ markers utilizing a range of metadata
parameters derived from the quantity and distribution of each
sequence across all analyzed samples. Multiple libraries of the
same individual were included in the DArTseq™ genotyping
process, enabling reproducibility scores to be calculated for each
candidate marker. The outputs generated by DArTsoft14
included reproducibility values at >90%, with read depth >3.5
for SNPs and >5 for PA markers, with call rate >80% (proportion
of samples for which the marker was scored) (Koomgun et al.,
2020; Laopichienpong et al., 2021; Nguyen et al., 2021a; Nguyen
et al., 2021b).

Marker Selection and DArT Sequencing
Analysis

Sex-specific loci were derived from the analysis of SNP
codominant markers and PA dominant markers. The SNP
data were scored for homozygotes to reference allele as “0”
(the most common allele), the alternate SNP allele
homozygote as “1”, the heterozygote as “2”, or a score of “-”
as the double null/null allele (absence of a fragment remaining the
SNP in the genomic representation). The PA data were scored for
presence as “1”, absence as “0” or a result of “-” for putative
heterozygosity. For sex-linked markers in an XX/XY system,
reference alleles are often found on the X-chromosome. Here,
“SNP alleles” were those that showed polymorphism correlated to
the reference allele. SNP alleles from an XX/XY system should be
linked with the Y- chromosome and located on or near to the
male-determination region if the allele is tightly Y-specific. If the
two sex chromosomes recombine in an XX/XY sex chromosome
system, SNP alleles should occasionally appear on the X
chromosome. If this scenario occurs, then some males might
be homozygous for SNP alleles at particular loci. As a result,

Frontiers in Genetics | www.frontiersin.org

38

Sex Determination of Hybrid Catfish

females could be heterozygous and exhibit a copy of the SNP
allele. However, this probability is low. Sex-linked or sex-specific loci
were obtained from the analysis of SNP co-dominant markers and
PA-dominant markers. For an XX/XY sex chromosome system, the
SNP and PA loci sequenced for at least 70%, 80%, 90% and 100% of
males were involved in a separate data set. Loci, where all males
passed the 100% filtering criterion, were designated as perfectly male-
linked, whereas those that passed the 70%-90% criterion were
considered moderately male-linked loci (Koomgun et al, 2020;
Laopichienpong et al,, 2021; Nguyen et al, 2021a; Nguyen et al,
2021b). A similar approach was used to target loci with ZZ/ZW
system. The Hamming distance was calculated as the number of
pairwise differences between male and female individuals across SNP
and PA loci using the “rdist” function in R software (R version 3.5.1).
Heatmaps were represented using the function ‘pheatmap’ in
ggplot2 R package (R Core Team, 2021). To evaluate the genetic
association between each locus and phenotypic sex, we performed the
Cochran-Armitage test (CATT) (Lambert et al, 2016; Sopniewski
et al, 2019; Koomgun et al, 2020; Laopichienpong et al, 2021;
Panthum et al., 2021). Similarly, the chi-square test was used to assess
whether the proportion of different genotypes followed the null
expectation. Polymorphism information content (PIC) values, as
an index for evaluating SNP and PA loci, were calculated for each
locus. The PIC values ranged from 0 (fixation of one allele) to 0.5
(frequencies of both alleles are equal) (Sven and Klaus, 2019;
Koomgun et al,, 2020; Laopichienpong et al., 2021; Nguyen et al,,
2021a; Nguyen et al., 2021b; R Core Team, 2021).

Estimation of Expected Sex-Linked Markers
The probability of random candidate sex-linked loci showing
associations with sex under a small sample size was assessed using
the formula P; = 0.5”, where P is the probability that a given locus,
iis sex-linked by chance, 0.5 is the probability that either a female
is homozygous or a male is heterozygous at a given locus, and 7 is
the number of individuals sequenced (Koomgun et al., 2020;
Laopichienpong et al., 2021; Nguyen et al., 2021a; Nguyen et al.,
2021b).

Comparison of Potential Sex-Linked Loci
We designated all candidate loci, in which males (in the case of
XY) or females (in the case of ZW) were not 100%, to moderately
sex-linked loci: 90/10; 80/20; 70/30. Significant differences among
the three groups of sex-linked loci were evaluated by the chi-
square test using the R package “stats” for PA loci and the
Kruskal-Wallis and Nemenyi test using the R package
“PMCMR” for SNP loci (R Core Team, 2021), based on the
mean heterozygosity and standard deviation for each. All
candidate loci were plotted against each individual using the
“glPlot” function in the dartR R package (Gruber and Georges,
2021; R Core Team, 2021).

Homology Searches

For all sex-linked loci that met our criteria and had a statistically
significant association with phenotypic sex, the hybrid sex-linked loci
were searched to find the genome-wide SNP of their parents (Clarias
gariepinus x Clarias macrocephalus) and detect the inherited loci. In
this study, genome-wide SNP of Clarias gariepinus x Clarias
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TABLE 1 | DArT analysis for 15 male and 15 female individuals of hybrid catfish (Clarias gariepinus, Burchell, 1822 x Clarias macrocephalus, Gunther, 1864).

ZZ/ZW sex-determination type 30:70 male:female 20:80 male:female 10:90 male:  0:100 male:
female female

SNP? PA® SNP? PA® SNP? PA° SNP® PA°

Total number of DArT analyses 50,348 51,294 50,348 51,294

Sex-linked loci 7 128 1 16 - - - -

Overall mean distance between 0.669 + 0.019 0.712 + 0.008 0.760 + 0.029 0.745 + 0.009 — — — -

males and females

Overall mean distance within 0.382 + 0.026 0.397 + 0.019 0.343 + 0.047 0.338 + 0.018 — — — —

females

Overall mean distance within males 0.370 + 0.032 0.613 + 0.011 0.133 + 0.033 0.603 + 0.017 — — — —

CATT test r= x2= = 2= - - — —

5.231-16.425 p < .022  4.320-13.715p < .037  16.425p < .000 6.250-13.715 p < .012
XX/XY sex-determination type 70:30 male:female 80:20 male:female 90:10 male:  100:0 male:
female female
SNP? PA® SNP? PA® SNP® PA® SNP® PA®

Sex-linked loci 7 97 — 7 =4 = i —

Overall mean distance between males and 0.680 + 0.014 0.719 + 0.018 — 0.778 + 0.020 = — - —

females

Overall mean distance within females 0.457 + 0.021 0.517 + 0.033 — 0.539 + 0.038 - - - =

Overall mean distance within males 0.367 + 0.02 0.403 + 0.022 =3 0.318 + 0.022 - = - =

CATT test 2= 2= — X2 = . = = =

6.533-10.995 p < .001

4SNP, Single-nucleotide polymorphic loci.
PPA, Restriction fragment presence/absence loci.

macrocephalus was used from our previous study as described by
Nguyen et al. (2021a); Nguyen et al. (2021b). NCBI BLAST was
performed to discover homologies of sex-linked SNP/PA loci against
a selection of available teleost fish genomes including Japanese rice
fish (Oryzias latipes, Temminck and Schlegel, 1846), zebrafish (Danio
rerio, Hamilton, 1822), Japanese pufferfish (Takifugu rubripes,
Temminck and Schlegel, 1850), channel catfish (Ictalurus
punctatus, Rafinesque, 1818), and chicken (Gallus, Linnaeus, 1758)
(Supplementary Table S1). These species were selected as
representative of reference genomes due to the availability of high-
quality gene annotations and almost complete up-to-date assemblies
(Takeda, 2008; Warren et al., 2017). A BLAST homology search was
performed in two rounds. First, we aligned sex-linked loci against the
reference teleost genome, and then mapped the homologous genes to
further clarify their location on sex chromosomes of high-quality
annotated genomes that were representative of vertebrate species.
Sex-linked loci were used to search against both the NCBI “nr”
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) and the RepBase version 19.
11 database (Genetic Information Research Institute; https://www.
girinst.org/) (Bao et al,, 2015). RepBase is a database of transposable
elements including DNA transposons, LTR and non-LTR
retrotransposons and endogenous retroviruses (ERVs). We chose
criteria of E-values lower than .005 and query coverage with
similarity of more than 60%.

RESULTS

The DArTseq methodology identified 50,348 SNP loci and
51,294 PA loci. Polymorphism information content values
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4.572-16.250 p < .032

9.458-16.250 p < .002

ranged from 0 to 0.50 for all loci, suggesting that the overall
distribution of PIC values was asymmetrical and skewed
toward higher values. Several SNP and PA loci were
selected with a varying set of criteria (Table 1; Figure 1
and Figure 2) and compared to determine the existence of
XX/XY or ZZ/ZW SDS in the hybrid. In the case of ZZ/ZW
type, filtering using the criterion of 30:70 male:female showed
in seven SNP loci and 128 PA loci as moderately female-
linked (Supplementary Table S2, Figure 2). Hamming
distances between male and female individuals using the
moderately sex-linked SNP and PA loci indicated within-
sex distances of 0.370 + 0.032 in males and 0.382 + 0.026 in
females for SNP loci, and 0.613 + 0.011 in males and 0.397 +
0.019 in females for PA loci. Between-sex distances were
0.669 * 0.019 for SNP loci and 0.712 + 0.008 for PA loci.
The CATT results showed a statistically significant
association with the phenotypic sex for seven SNP loci (x>
=5.231-16.425, p < .022) and 128 PA loci (Xz =4.320-13.715,
p < .037) (Table 1; Supplementary Table S2, Figure 1). The
criterion of 20:80 male:female involved the designation of one
SNP locus and sixteen PA loci as moderately female-linked
(Supplementary Table S2, Figure 2). Proportional pairwise
Hamming distances between males and females using the
moderately sex-linked SNP and PA loci (under the null
exclusive model) showed within-sex distances of 0.133 +
0.033 in males and 0.343 + 0.047 in females for SNP loci,
and 0.603 +0.017 in males and 0.338 + 0.018 in females for PA
loci. Between-sex distances were 0.760 + 0.029 for SNP loci
and 0.745 + 0.009 for PA loci. The CATT results verified a
significant association with phenotypic sex for one SNP locus
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FIGURE 1| Hamming distances between male and female individuals of hybrid catfish (Clarias gariepinus, Burchell, 1822 x Clarias macrocephalus, Glnther, 1864).

The loci were filtered under different criteria. (A) Single-nucleotide polymorphic (SNP) loci filtered under the criterion 70:30 (male:female), (B) Restriction fragment
presence/absence (PA) loci under the criterion 70:30 (male:female), (C) PA loci under the criterion 80:20 (male:female), (D) SNP loci under the criterion 30:70 (male:
female), (E) PA loci under the criterion 30:70 (male:female), (F) SNP loci under the criterion 20:80 (male:female) and (G) PA loci under the criterion 20:80 (male:

(x* =16.425, p < 0.000) and 16 PA loci (x* = 6.250-13.715, p <
0.012) (Table 1; Supplementary Table S2, Figure 1).

For the XX/XY determination system, filtering using the
criterion of 70:30 male:female yielded seven SNP loci and
97 PA loci that were male-linked (Supplementary Table S3,
Figure 2). Hamming distances between male and female
bighead catfish using sex-linked SNP and PA loci (under
the null exclusive model) showed lower within-sex distances
0f 0.367 £ 0.02 in males and 0.457 + 0.021 in females for SNP
loci, and 0.403 + 0.022 in males and 0.517 + 0.033 in females
for PA loci. Between-sex distances of 0.680 + 0.014 for SNP
loci and 0.719 + 0.018 for PA loci were observed. CATT
results verified the significance of associations, with
phenotypic sex for seven SNP loci (y* = 6.533-10.995, p <
.001) and 97 PA loci (y* = 4.572-16.250, p < .032) (Table 1;
Supplementary Table S3, Figure 1). No SNP loci and seven
PA loci were associated with males based on the criterion of
80:20 male:female (Supplementary Table S3, Figure 2).
Hamming distances between male and female hybrid
catfish using sex-linked PA loci showed lower within-sex
distances 0.318 + 0.022 in males and 0.539 + 0.038 in females
for PA loci. Between-sex distances of 0.778 + 0.020 for PA
loci were observed. CATT results verified significant
associations with phenotypic sex for seven PA loci (x> =
9.458-16.250, p < .002) (Table 1; Supplementary Table S3,
Figure 1). A glPlot showed similarity between sexes in the
sample group for both XX/XY and ZZ/ZW SDSs when
considering moderately sex-linked loci (Figure 3). Female
sex-linked loci and male sex-linked loci of hybrid catfish
indicated sequence homology with vertebrate genomes,
based on global BLAST analyses of NCBI databases

(Supplementary Tables S2,3). Regarding the ZZ/ZW type,
ten of the 135 SNP and PA loci were homologous to the
putative genes. Moreover, two SNP loci and 18 PA loci
demonstrated  partial homology with transposable
elements (TEs) (Supplementary Tables S4,5). For PA loci,
chi-square tests showed that the 30:70 and 20:80 filtering
criteria demonstrated insignificant differences in males (y* =
5.388 x 10’32,p = 1) and females ()(2 =1.959 x 10’33,p =1).
For SNP loci, Kruskal-Wallis tests indicated that these
filtering  criteria produced insignificantly  different
percentages of heterozygosity in males (H = 2.860, p =
.091) and females (H = 6.840, p = .009) (Supplementary
Figure S1). Calculation of pairwise comparisons using the
Nemenyi-tests with  chi-square approximation for
independent samples revealed that the 30:70 and 20:80
filtering criteria resulted in insignificant differences in
heterozygosity compared with other filters for males (p =
.143) and females (p = .571). By contrast, with regard to the
XX/XY sex chromosome system, six of 104 SNP and PA loci
were homologous to the putative genes. Two SNP loci and
twenty-one PA loci showed partial homology with TEs
(Supplementary Tables $6,7). Chi-square tests showed
that the 70:30 and 80:20 filtering criteria indicated
insignificant differences in males (y* = 3.962 x 107, p =
1) and females (y* = 2.518 x 1072, p = 1) for PA loci. The
hybrid sex-linked loci were searched to find the genome-wide
SNP of their parents (C. gariepinus x C. macrocephalus) and
detect the loci inherited from their parents. The genome-
wide SNP of their parents (C. gariepinus x C. macrocephalus)
were used from our previous study, as described by Nguyen
et al. (2021a); Nguyen et al. (2021b). Twenty-six candidate
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FIGURE 2| Graph showing number of loci for different hypotheses of sex determination systems after filtering with different criteria. X-axis indicates the number of
loci and Y-axis shows the filter criteria.
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FIGURE 3| (A) Index of seven sex-linked loci filtered under the criterion 70:30 (male:female) (XX/XY sex-determination system) and (B) index of seven sex-linked

loci filttered under the criteria 30:70 and index of one sex-linked loci filttered under the criteria 20:80 (male:female) (ZZ/ZW sex-determination system). Plots were
generated using the “glPolt” function in the R package dartR (Gruber and Georges, 2021). Yellow shading indicates reference allelic homozygosity, green is indicative of
heterozygosity and pink indicates SNP allelic homozygosity.

sex-linked markers were found in bighead catfish and three Across a range of sample sizes and loci, 30 phenotypically
candidate sex-linked markers were found in African catfish,  sexed individuals are essential to minimize the probability of
while 75 of the total 84 candidate sex-linked loci of the  selecting less than one spurious sex-linked marker. The
bighead catfish were found in the hybrids (Supplementary  probability (P;) of a single locus exhibited a sex-linked pattern
Table S8). by chance was 9.31 x 1071, For the full data set (no filtering), out
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of 101,642 loci (including SNP and PA loci), 9.463 x 10~ were
expected to spuriously show perfect sex-linked loci based on
chance alone.

DISCUSSION

Although the SDS of the last common ancestor of clariid fishes is
not known, the hybrid catfish in this study provided a unique
opportunity to study the various SDSs that are present in clariid
fishes. Most SDSs are XY or ZW homomorphic sex chromosomes
(Nguyen et al., 2021a). Due to the lability of sex determination
processes in teleosts, closely related species sometimes possess
different SDSs (Kitano and Peichel, 2012). Both sex
determination systems might have undergone collateral
evolution, or a transformation might have occurred in the
common ancestor, which separated the lineages. Here, the
genome-wide SNP of their parent (C. gariepinus x C.
macrocephalus) was used from our previous research, as
described by Nguyen et al. (2021a); Nguyen et al. (2021b).
Female bighead catfish can produce only X gametes, whereas
male African catfish can produce possible X, Y, and Z gametes. If
both systems are present in the African catfish population in
Thailand, their sex-linked SNP loci can be independently
transferred from the male parent to the hybrid, thereby
resulting in the presence of different SNP profiles in each
individual. In this study, 26 candidate sex-linked markers
came from the bighead catfish and three candidate sex-linked
markers came from the African catfish. Seventy-five of the total
84 candidate sex-linked loci of the bighead catfish were observed
in the hybrids but they were not all sex-linked loci in the hybrid
(Supplementary Tables S8). This suggests that several sex-
determining loci or clusters remain in the parental African
catfish. Developmental pathways that are downstream of the
primary sex-determining genes are conserved among various
organisms having vastly different SDSs (Ezaz et al, 2016).
These results collectively suggest that the variation in the SDSs
of the parents might result in PSD in the hybrid. Male F; hybrids
are sterile because of the influence of different numbers of diploid
chromosomes in their parents or because of the presence of
complex SDSs. Sex-linked genes are important to determine the
incompatibility between hybrids and the presence of non-
homologous sex chromosomes could indicate reproductive
isolation and increase the probability of speciation
(Qvarnstrom and Bailey, 2009). In our previous study, we
have shown that all sex-linked loci in African catfish and
bighead catfish were not found in the same linkage group
(Nguyen et al, 2021a; Nguyen et al, 2021b). Therefore, we
predict that African catfish exhibit PSD on different
chromosomes. PSD results in the generation of multiple
phenotypic or reproductive classes within one sex. In the
African catfish, more than two sex types have been observed
in diverse populations (Teugels et al., 1992; Eyo and Effiong,
2005; Nguyen et al., 2021a). The presence of multiple classes may
promote fitness benefits as natural selection in the population,
suggesting that PSD engenders an evolutionarily stable scenario.
Moreover, there is a noticeable diversity in how PSD has evolved

Frontiers in Genetics | www.frontiersin.org

separately across teleosts (Sandra and Norma, 2010). Genetic
conflicts may also markedly impact hybrid sex determination and
gametogenesis, with outcomes as intersex or sterile individuals,
respectively and this can build strong post-zygotic barriers. PSD
systems are evolutionarily unstable, because of sex-specific
natural selection; they have generally been evaluated as only a
midway step in the evolution of SDSs (Bachtrog et al., 2014).
Several reasons for the emergence of differences in SDSs in two
closely related species have been postulated. With no sex
chromosomes in the last common ancestor, both systems
developed independently or one lineage retained the ancestral
sex chromosomes, while transition occurred in other lineages
(Mank et al., 2006). Such transitions can occur on the same pair of
sex chromosomes or involved as an autosome that then became a
new sex chromosome (Franchini et al., 2018). Sex-determining
gene(s) at the molecular level may change their mode of action
from female to male determination. Alternatively, a novel sex-
determining (SD) gene might have initiated SD turnover in the
evolving lineage. This change in mode of action of the genes may
occur in the lineage of clariid fish, where both XX/XY and ZZ/ZW
systems are found (Nguyen et al., 2021a; Nguyen et al., 2021b). By
contrast, the platyfish has XY system, which is an ancestral SDS.
One X chromosome acquired a female sex-determination allele
dominant to the Y chromosome. This resulted in WY individuals
developing ovaries. Several species of cichlid fish from Lake
Malawi exhibited both an XY locus and WZ locus on different
chromosome pairs. With occurrence on the same individual, the
W female determines the dominant locus and the selected
individual consequently develops as female (Ser et al., 2010).
Ultimately, the dominant locus determines the fate of the gonad
in the system being examined. Modification of existing sex
chromosomes leads to multifactorial mechanisms, creating a
functional third sex chromosome at the same or different
locus. In this study, the female hybrids were fertile and able to
produce large numbers of backcross progeny (Na-Nakorn et al.,
2004; Ezaz et al., 2016). This suggested that the systems remain
partially compatible (if one supersedes the other). We determined
seven SNP or PA markers for male-linked loci and 17 SNP or PA
markers for female-linked loci, with the criterion of 80:20 male:
female across all examined hybrid specimens. Comparison of sex-
linked loci of hybrids and the parent species showed no tendency
of inheritance. Many false-positive signals might be desirable
from such specimens due to their diverse genetic backgrounds
(Gamble et al., 2015). Current data exhibited the possibility of this
approach. The probability that a single locus exhibited sex linkage
pattern by chance was 9.31 x 107'°, and when the full data set
(without filtering) of 101,642 loci (including SNP and PA loci)
was considered, 9.463 x 107 were expected to spuriously indicate
sex-linkage. Thus, identification of any erroneously sex-linked
loci by chance seems unlikely. This suggests the possibility of the
presence of novel sex-linked genetic loci as a consequence of
combination polygenes. Combining independently evolved sex
chromosomes could also stimulate new combinations of sexual
characters (Tanaka et al., 2007). Sex determination in zebrafish
and cichlids likely results from a combination of additive and
epistatic interactions at many loci (Parnell and Streelman, 2013).
Surprisingly, the PA35637844 female-linked locus of the hybrid
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in the present study showed homology with the B4GALNTI
gene, and this locus was derived from a non-sex-linked locus
found in the bighead catfish. Our gene ontology search in the
Ensembl v103 database confirmed that the B4GALNTI gene
encodes functions related to the spermatogenesis pathway and
hatchability (Izumi et al., 2019). Hence, the PA35637844 locus
might have a putative role in the sex determination of the
hybrids. An allele that wins in one combination of sex
determination loci genotypes may lose in another, as
observed from sex-linked loci of the bighead catfish.
However, the influence of PSD remains in hybrids and
African catfish. These outcomes illustrate the difficulty in
predicting the consequences of SDSs on the speciation
process that has only been studied in some cases.

CONCLUSION

Hybrid catfish is of considerable economic importance for
aquaculture as they can improve productivity through hybrid
vigor, produce sterile animals or transfer desirable traits. Our
findings revealed that SDS type ZZ/ZW can co-exist with XX/XY
types as PSD in the same individuals of hybrid catfish. These
models can be used to study the evolution of gene networks and
epistasis, thereby allowing us to investigate the developmental
regulation of genes that are traditionally thought to be members
of core sex signaling networks. Identifying additional sex-
determining genes and their interactions can offer unique
insight to infer the process of sexual development. However,
our results need to be extrapolated to other catfish species to
investigate the evolution of SDSs in clariid fish. Chromosome
mapping using fluorescence in situ hybridization on sex-linked
loci and high-quality whole genome assemblies should be
performed in catfish to identify the positions of sex-
determining genes/loci.
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Conclusions

Hybrid catfish play an important role in Thailand aquaculture. However,
hybrids are sterile due to variable reproductive failure, limiting mass production of the
F1 hybrid. Therefore, genetic improvement in the breeding management of North
African catfish, bighead catfish and their hybrids is critical.

This research presented a number of moderately sex-linked loci using a
genome-wide SNP approach. Results indicated that the male heterogametic XX/XY
sex-determination system should co-exist with the ZW system in the same individuals
of C. gariepinus. The SDS of African catfish might be influenced by a polygenic sex-
determination (PSD) system but the locations of genomic regions associated with sex
chromosome differentiation remain unclear. Male-linked loci on the putative Y sex
chromosome of the bighead catfish occupy a small portion of the genome. Results
suggest the presence of XX/XY sex determination in bighead catfish. One male-
linked locus exhibited homology with the GTSF1L gene, demonstrating an expression
pattern enriched in testes, while another showed partial homology with the Z sex
chromosomes of the western terrestrial garter snake and chicken. Moreover, a PCR-
based DNA marker validated the male-linked loci in bighead catfish. Results showed
that ZZ/ZW SDS can co-exist with XX/XY SDS as PSD in the same individuals of
hybrid catfish. Seven moderately male-linked loci and seventeen female-linked loci
were collected across all the hybrid individuals. Most of these loci were not sex-
linked in the parental species. Twenty-six candidate sex-linked markers were sourced
from bighead catfish, while three candidate sex-linked markers came from African
catfish. Seventy-five of the total 84 candidate sex-linked loci of bighead catfish were
observed in the hybrids but were not all sex-linked loci. This suggests that several
sex-determining loci remain in the parental African catfish and that variation in the
SDSs of the parents might result in PSD in the hybrid. One female-linked locus was
homologous with the BAGALNTL gene, which is involved in the spermatogenesis
pathway and hatchability. This approach provides basic information to study the sex-
determination mechanisms and identify potential sex-determination regions in clariid

catfish.
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Recommendations for future work

The relevance of sex-determination systems in understanding the evolutionary
and speciation processes and the genetic architecture of Clariid catfish remains
unknown. Therefore, a complete high-quality genome assembly for the African
catfish, bighead catfish and their hybrids is essential to elucidate the sex-
determination mechanism and develop genotypic sex assays. This research will

provide a baseline for genetic manipulation and breeding programs.
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